Blend of natural rubber (NR) and chlorosulfonated polyethylene (CSM) was so interesting due to binding of the good oil resistance of CSM, the good mechanical properties and low cost of NR. However, due to the differen...Blend of natural rubber (NR) and chlorosulfonated polyethylene (CSM) was so interesting due to binding of the good oil resistance of CSM, the good mechanical properties and low cost of NR. However, due to the different polarities of two rubbers, phase separation and inferior properties of NR/CSM blend were obtained. The practical way to improve its properties is the addition of the third component to bind both phases of the blend. Effects of poly(vinyl chloride), PVC as compatibilizer on cure characteristics, morphology, mechanical properties and automotive fuel resistance of NR/ CSM blend were investigated. In this contribution, NR/CSM blend with blend ratio of 50/50 was prepared using a two-roll mill, and then vulcanized in a compression mold at 160°C. The PVC content was varied from 1 to 7 phr. It was found that the usage of 7 phr PVC led to improve interaction between NR and CSM phases. Therefore, increase in cure characteristics, mechanical strength and automotive fuel resistance of the blend was observed.展开更多
The natural rubber (NR) was mixed with fluoro elastomer (FKM), due to the difference of polarity in NR and FKM made this blend incompatible so the third component was used. NR/FKM blended with the blend ratio of 70/30...The natural rubber (NR) was mixed with fluoro elastomer (FKM), due to the difference of polarity in NR and FKM made this blend incompatible so the third component was used. NR/FKM blended with the blend ratio of 70/30 was prepared by using a two-roll mill and vulcanization in a compression mold at 180℃ using peroxide as a curative agent. Epoxidized natural rubber (ENR) or polyisoprene-graft-maleic acid monomethyl ester (PI-ME) was used as a third component. The curing characteristics, morphology, mechanical properties, and automotive fuel swelling were investigated. The results indicated that the scorch time and cure time of the blend rubbers were longer as adding ENR or PI-ME. Both mechanical properties and automotive fuel resistance of the blend rubbers were found to increase with adding ENR in rubber blend. Conversely for adding PI-ME, automotive fuel resistance of the blend rubbers was found to decrease progressively with increasing PI-ME content.展开更多
The natural rubber (NR) was mixed with chlorosulfonated polyethylene (CSM), due to the difference of polarity in NR and CSM made this blend incompatible and the third component was used. Epoxidzed natural rubber (ENR)...The natural rubber (NR) was mixed with chlorosulfonated polyethylene (CSM), due to the difference of polarity in NR and CSM made this blend incompatible and the third component was used. Epoxidzed natural rubber (ENR) was used as a third component. NR/CSM blended with the blend ratio of 50/50 was prepared by using a two-roll mill and vulcanization in a compression mold at 160°C. The ENR content was varied from 1 to 7 phr. The curing characteristics, morphology, mechanical properties, and automotive fuel swelling were investigated. The results indicated that the cure time of the blend rubbers was shorter as adding ENR. The mechanical properties of the blend rubbers were not affected by ENR content. However, automotive fuel resistance of the blend rubbers was found to increase with adding ENR in rubber blend.展开更多
This article reports the production of electrospun fibers from blends of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) solutions. The produced fibers were characterized by scanning electron microscopy (S...This article reports the production of electrospun fibers from blends of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) solutions. The produced fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). SEM images showed the reduction in fiber size with ENR content of up to 25% in the mixture PLA/ENR. FTIR analysis revealed a possible interaction between carboxylic group of PLA and epoxi group of ENR. Thermal analysis showed the increase of the crystallinity fraction with ENR content and a decrease in thermal stability of eletrospun mats with the addition of ENR. The dynamic mechanical properties showed an enhancement of the stiffness of PLA/ENR blends with the increase of ENR content, which can support the production of interesting materials for tissue engineering based on renewable and biocompatible polymers. The reported properties indicate the possibility to use such fiber mats as potential materials in tissue engineering.展开更多
In this work,it was found that the improved battery performance such as thermal stability and cycle performance with the blending of nature and artificial graphite.
Natural rubber latex (NRL) and methyl methacrylate (MMA) grafted rubber latex were blended in different ratios and irradiated at various absorbed doses by gamma rays from Co-60 source at room temperature. The tens...Natural rubber latex (NRL) and methyl methacrylate (MMA) grafted rubber latex were blended in different ratios and irradiated at various absorbed doses by gamma rays from Co-60 source at room temperature. The tensile properties, swelling ratio and permanent set were measured. The maximum tensile strength and modulus at 500% elongation were obtained at an absorbed dose of 8 kGy. Modulus increases from 6.99 MPa to 9.87 MPa for an increase in proportion of MMA grafted rubber from 40% to 60% in the blend at similar absorbed dose. Elongation at break and swelling ratio decrease with increasing absorbed dose as well as the MMA grafted rubber content in the blends. The decreasing trend of permanent set is high up to 5 kGy absorbed dose, and beyond that dose, it becomes almost flat.展开更多
The mechanical and thermal properties of solution-cast blends of Polyvinyl chloride (PVC) and Epoxidized Liquid Natural Rubber having 30 mole % epoxidation (ELNR-30) have been examined using Zwick materials testing ma...The mechanical and thermal properties of solution-cast blends of Polyvinyl chloride (PVC) and Epoxidized Liquid Natural Rubber having 30 mole % epoxidation (ELNR-30) have been examined using Zwick materials testing machine and heating in air circulating oven (200°C) at different time intervals respectively. The ELNR was prepared by oxidative degradation of natural rubber latex using Phenylhydrazine/Oxygen system and subsequent epoxidation with formic acid and 30% H2O2. Tensile strength of unblended PVC was 26.5 ± 0.5 MPa. The blends had lower tensile strength which decreased with increase in blend ratio of ELNR-30. Experimental data revealed that there was greater homogeneity in the PVC/ELNR-30 (80/20) compared with PVC/ELNR-30 (90/10). The PVC/ELNR-30 (80/20) also showed superior elongation at maximum (%) than the unblended PVC and PVC/ELNR-30 (90/10) in that order. Thermal stability decreased in the order PVC, PVC/ELNR-30 (90/10), PVC/ELNR-30 (80/20).展开更多
文摘Blend of natural rubber (NR) and chlorosulfonated polyethylene (CSM) was so interesting due to binding of the good oil resistance of CSM, the good mechanical properties and low cost of NR. However, due to the different polarities of two rubbers, phase separation and inferior properties of NR/CSM blend were obtained. The practical way to improve its properties is the addition of the third component to bind both phases of the blend. Effects of poly(vinyl chloride), PVC as compatibilizer on cure characteristics, morphology, mechanical properties and automotive fuel resistance of NR/ CSM blend were investigated. In this contribution, NR/CSM blend with blend ratio of 50/50 was prepared using a two-roll mill, and then vulcanized in a compression mold at 160°C. The PVC content was varied from 1 to 7 phr. It was found that the usage of 7 phr PVC led to improve interaction between NR and CSM phases. Therefore, increase in cure characteristics, mechanical strength and automotive fuel resistance of the blend was observed.
文摘The natural rubber (NR) was mixed with fluoro elastomer (FKM), due to the difference of polarity in NR and FKM made this blend incompatible so the third component was used. NR/FKM blended with the blend ratio of 70/30 was prepared by using a two-roll mill and vulcanization in a compression mold at 180℃ using peroxide as a curative agent. Epoxidized natural rubber (ENR) or polyisoprene-graft-maleic acid monomethyl ester (PI-ME) was used as a third component. The curing characteristics, morphology, mechanical properties, and automotive fuel swelling were investigated. The results indicated that the scorch time and cure time of the blend rubbers were longer as adding ENR or PI-ME. Both mechanical properties and automotive fuel resistance of the blend rubbers were found to increase with adding ENR in rubber blend. Conversely for adding PI-ME, automotive fuel resistance of the blend rubbers was found to decrease progressively with increasing PI-ME content.
文摘The natural rubber (NR) was mixed with chlorosulfonated polyethylene (CSM), due to the difference of polarity in NR and CSM made this blend incompatible and the third component was used. Epoxidzed natural rubber (ENR) was used as a third component. NR/CSM blended with the blend ratio of 50/50 was prepared by using a two-roll mill and vulcanization in a compression mold at 160°C. The ENR content was varied from 1 to 7 phr. The curing characteristics, morphology, mechanical properties, and automotive fuel swelling were investigated. The results indicated that the cure time of the blend rubbers was shorter as adding ENR. The mechanical properties of the blend rubbers were not affected by ENR content. However, automotive fuel resistance of the blend rubbers was found to increase with adding ENR in rubber blend.
文摘This article reports the production of electrospun fibers from blends of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) solutions. The produced fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). SEM images showed the reduction in fiber size with ENR content of up to 25% in the mixture PLA/ENR. FTIR analysis revealed a possible interaction between carboxylic group of PLA and epoxi group of ENR. Thermal analysis showed the increase of the crystallinity fraction with ENR content and a decrease in thermal stability of eletrospun mats with the addition of ENR. The dynamic mechanical properties showed an enhancement of the stiffness of PLA/ENR blends with the increase of ENR content, which can support the production of interesting materials for tissue engineering based on renewable and biocompatible polymers. The reported properties indicate the possibility to use such fiber mats as potential materials in tissue engineering.
文摘In this work,it was found that the improved battery performance such as thermal stability and cycle performance with the blending of nature and artificial graphite.
文摘Natural rubber latex (NRL) and methyl methacrylate (MMA) grafted rubber latex were blended in different ratios and irradiated at various absorbed doses by gamma rays from Co-60 source at room temperature. The tensile properties, swelling ratio and permanent set were measured. The maximum tensile strength and modulus at 500% elongation were obtained at an absorbed dose of 8 kGy. Modulus increases from 6.99 MPa to 9.87 MPa for an increase in proportion of MMA grafted rubber from 40% to 60% in the blend at similar absorbed dose. Elongation at break and swelling ratio decrease with increasing absorbed dose as well as the MMA grafted rubber content in the blends. The decreasing trend of permanent set is high up to 5 kGy absorbed dose, and beyond that dose, it becomes almost flat.
文摘The mechanical and thermal properties of solution-cast blends of Polyvinyl chloride (PVC) and Epoxidized Liquid Natural Rubber having 30 mole % epoxidation (ELNR-30) have been examined using Zwick materials testing machine and heating in air circulating oven (200°C) at different time intervals respectively. The ELNR was prepared by oxidative degradation of natural rubber latex using Phenylhydrazine/Oxygen system and subsequent epoxidation with formic acid and 30% H2O2. Tensile strength of unblended PVC was 26.5 ± 0.5 MPa. The blends had lower tensile strength which decreased with increase in blend ratio of ELNR-30. Experimental data revealed that there was greater homogeneity in the PVC/ELNR-30 (80/20) compared with PVC/ELNR-30 (90/10). The PVC/ELNR-30 (80/20) also showed superior elongation at maximum (%) than the unblended PVC and PVC/ELNR-30 (90/10) in that order. Thermal stability decreased in the order PVC, PVC/ELNR-30 (90/10), PVC/ELNR-30 (80/20).