期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Shared Natural Neighbors Based-Hierarchical Clustering Algorithm for Discovering Arbitrary-Shaped Clusters
1
作者 Zhongshang Chen Ji Feng +1 位作者 Fapeng Cai Degang Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2031-2048,共18页
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared... In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes. 展开更多
关键词 Cluster analysis shared natural neighbor hierarchical clustering
下载PDF
FEW-NNN: A Fuzzy Entropy Weighted Natural Nearest Neighbor Method for Flow-Based Network Traffic Attack Detection 被引量:7
2
作者 Liangchen Chen Shu Gao +2 位作者 Baoxu Liu Zhigang Lu Zhengwei Jiang 《China Communications》 SCIE CSCD 2020年第5期151-167,共17页
Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the foc... Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the focus of many initiatives. Effectively analyzing massive network security data with high dimensions for suspicious flow diagnosis is a huge challenge. In addition, the uneven distribution of network traffic does not fully reflect the differences of class sample features, resulting in the low accuracy of attack detection. To solve these problems, a novel approach called the fuzzy entropy weighted natural nearest neighbor(FEW-NNN) method is proposed to enhance the accuracy and efficiency of flowbased network traffic attack detection. First, the FEW-NNN method uses the Fisher score and deep graph feature learning algorithm to remove unimportant features and reduce the data dimension. Then, according to the proposed natural nearest neighbor searching algorithm(NNN_Searching), the density of data points, each class center and the smallest enclosing sphere radius are determined correspondingly. Finally, a fuzzy entropy weighted KNN classification method based on affinity is proposed, which mainly includes the following three steps: 1、 the feature weights of samples are calculated based on fuzzy entropy values, 2、 the fuzzy memberships of samples are determined based on affinity among samples, and 3、 K-neighbors are selected according to the class-conditional weighted Euclidean distance, the fuzzy membership value of the testing sample is calculated based on the membership of k-neighbors, and then all testing samples are classified according to the fuzzy membership value of the samples belonging to each class;that is, the attack type is determined. The method has been applied to the problem of attack detection and validated based on the famous KDD99 and CICIDS-2017 datasets. From the experimental results shown in this paper, it is observed that the FEW-NNN method improves the accuracy and efficiency of flow-based network traffic attack detection. 展开更多
关键词 fuzzy entropy weighted KNN network attack detection fuzzy membership natural nearest neighbor network security intrusion detection system
下载PDF
A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids 被引量:3
3
作者 李庆华 陈莘莘 曾骥辉 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期51-57,共7页
A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry ... A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach. 展开更多
关键词 meshless method transient heat conduction problem axisymmetric functionally graded materials natural neighbor interpolation
下载PDF
Improved Multi-Bandwidth Mode Manifold for Enhanced Bearing Fault Diagnosis 被引量:1
4
作者 Guifu Du Tao Jiang +2 位作者 Jun Wang Xingxing Jiang Zhongkui Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期179-191,共13页
Variational mode decomposition(VMD) has been proved to be useful for extraction of fault-induced transients of rolling bearings. Multi-bandwidth mode manifold(Triple M, TM) is one variation of the VMD, which units mul... Variational mode decomposition(VMD) has been proved to be useful for extraction of fault-induced transients of rolling bearings. Multi-bandwidth mode manifold(Triple M, TM) is one variation of the VMD, which units multiple fault-related modes with different bandwidths by a nonlinear manifold learning algorithm named local tangent space alignment(LTSA). The merit of the TM method is that the bearing fault-induced transients extracted contain low level of in-band noise without optimization of the VMD parameters. However, the determination of the neighborhood size of the LTSA is time-consuming, and the extracted fault-induced transients may have the problem of asymmetry in the up-and-down direction. This paper aims to improve the efficiency and waveform symmetry of the TM method.Specifically, the multi-bandwidth modes consisting of the fault-related modes with different bandwidths are first obtained by repeating the recycling VMD(RVMD) method with different bandwidth balance parameters. Then, the LTSA algorithm is performed on the multi-bandwidth modes to extract their inherent manifold structure, in which the natural nearest neighbor(Triple N, TN) algorithm is adopted to efficiently and reasonably select the neighbors of each data point in the multi-bandwidth modes. Finally, a weight-based feature compensation strategy is designed to synthesize the low-dimensional manifold features to alleviate the asymmetry problem, resulting in a symmetric TM feature that can represent the real fault transient components. The major contribution of the improved TM method for bearing fault diagnosis is that the pure fault-induced transients are extracted efficiently and are symmetrical as the real. One simulation analysis and two experimental applications in bearing fault diagnosis validate the enhanced performance of the improved TM method over the traditional methods. This research proposes a bearing fault diagnosis method which has the advantages of high efficiency, good waveform symmetry and enhanced in-band noise removal capability. 展开更多
关键词 Variational mode decomposition Manifold learning natural nearest neighbor algorithm Rolling bearing Fault diagnosis Time-frequency signal decomposition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部