To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selec...To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selective chemical extraction technique was employed, to remove the different components, and the adsorption characteristics of AT on the SSs and the NSCSs were investigated. The observed adsorptions of AT on the original and extracted SSs and NSCSs were analyzed by nonlinear least squares fitting(NLSF) to estimate the relative contribution of the components. The results showed that the maximum adsorption of AT on the NSCSs was greater than that in the SSs, before and after extraction treatments, implying that the NSCSs were more dominant than the SSs for organic pollutant adsorption. It was also found that the Fe oxides, OMs, and residues in SSs(NSCSs) facilitated the adsorption of AT, but Mn oxides directly or indirectly restrained the interaction of AT with SSs(NSCSs) particles. The contribution of the Fe oxides to AT adsorption was more than that of OMs; the greatest contribution to AT adsorption on a molar basis was from the Fe oxides in the nonresidual fractions, indicating that the Fe oxides played an important role in controlling the environmental behavior of AT in an aquatic environment.展开更多
The dynamics of Cd scavenging from solutions by Fe/Mn oxides in natural surface coatings (NSCs) was investigated under laboratory conditions. Selective extraction methods were employed to estimate the contributions ...The dynamics of Cd scavenging from solutions by Fe/Mn oxides in natural surface coatings (NSCs) was investigated under laboratory conditions. Selective extraction methods were employed to estimate the contributions of Fe/Mn oxides, where hydroxylamine hydrochloride (0.01 mol/L NH2OH-HCl + 0.01 mol/L HNO3), sodium dithionite (0.4 mol/L Na2S2O4) and nitric acid (10% HNO3) were used as extraction reagents. The Cd scavenging was accomplished with developing periods of the NSCs (totally 21 data sets). The resulting process dynamics fitted well to the Elovich equation, demonstrating that the amount of Cd scavenged was proportional to the increments of Fe/Mn oxides that were accumulated in the NSCs. The amount of Cd bound to Fe oxides (MCdFe) and Mn oxides (MCdMn) could be quantified by solving two equations based on the properties of two extraction reagents. The amount of Cd scavenged by Fe/Mn oxides could also be estimated using MCdFe and MCdMn divided by the total amounts of Fe and Mn oxides in the NSCs, respectively. The results indicated that the Cd scavenging by Fe/Mn oxides was dominated by Fe oxides, with less roles attributed to Mn oxides. The estimated levels of Cd scavenging through Fe and Mn oxides agreed well with those predicted through additive-adsorption and linear-regression models.展开更多
Multistage sequential extraction with different sequences was applied to extracting natural surface coa tings(NSCs), and the results were compared with those by single stage extraction technique. The optimal sequent...Multistage sequential extraction with different sequences was applied to extracting natural surface coa tings(NSCs), and the results were compared with those by single stage extraction technique. The optimal sequential extraction scheme with the best performance was selected and incorporated into the method of selective extraction followed by adsorption and statistic analyses to study the adsorption parameters of Fe oxides, Mn oxides and organic matters in NSCs for Pb and Cd, to validate the applicability of the sequential extraction scheme. The Langmuir ad sorption parameters of each component of surface coating estimated according to the adsorption data of single stage extraction of NSCs were all similar to those of sequential extraction of NSCs, and the maximum difference between the metal adsorption abilities of the components estimated via the two extraction techniques was only about 20%, in dicating that either extraction techniques could be used. The optimal sequential extraction scheme obtained was first extracted with NH2OH·HCl, then with Na2S2O4, and finally with oxalic acid.展开更多
Natural freshwater surface coatings(biofilms and associated minerals), which were developed in the Nanhu Lake, Changchun, P. R. China, were used as an efficient biosorbent for the removal of Cd(Ⅱ) from aqueous soluti...Natural freshwater surface coatings(biofilms and associated minerals), which were developed in the Nanhu Lake, Changchun, P. R. China, were used as an efficient biosorbent for the removal of Cd(Ⅱ) from aqueous solutions. The batch experiments were carried out to determine the adsorption properties of Cd(Ⅱ) onto the natural surface coatings. The classical Langmuir adsorption isotherm was applied to estimating the equilibrium coefficients of Cd(Ⅱ) adsorbed on the surface coatings. The results show that the maximum adsorption capacity of the surface coatings is 434.78 μmol Cd/m2(being equal to 0.17 mmol Cd/g of surface coatings or 10.38 mmol Cd/g Fe) and the Cd(Ⅱ) removal from solution media by the natural surface coatings was shown to be strongly affected by solution pH and ion strength. The resulted information also indicates that the maximum Cd removal efficiency(CRE) was determined to be approximately 90% at initial Cd mass concentration of 0.1 mg/L(the concentration limit of Cd (Ⅱ) in wastewaters for discharge in aquatic media in Chinese legislation), and the kinetic adsorption of Cd(Ⅱ) onto the surface coatings is fast with around 70% of the total adsorption-taking place in 150 min in solution under the controlled laboratory conditions (mineral salts solution with defined speciation, ionic strength 0.05 mol/L, and 25 ℃). With the advantage of high Cd adsorption capacity, the natural surface coatings appear to be a potentially effective biosorbent for the removal and recovery of Cd (Ⅱ) from polluted water.展开更多
Natural surface coating samples (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the relationship between NSCSs and SSs in fractions of he...Natural surface coating samples (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the relationship between NSCSs and SSs in fractions of heavy metals (Fe, Mn, Zn, Cu, Pb, and Cd) using the modified sequential extraction procedure (MSEP). The results show that the differences between NSCSs and SSs in Fe fi'actions were insignificant and Fe was dominantly present as residual phase (76.22% for NSCSs and 80.88% for SSs) and Fe-oxides phase (20.33% for NSCSs and 16.15% for SSs). Significant variation of Mn distribution patterns between NSCSs and SSs was observed with Mn in NSCSs mainly present in Mn-oxides phase (48.27%) and that in SSs present as residual phase (45.44%). Zn, Cu, Pb and Cd were found dominantly in residual fractions (〉48%), and next in solid oxides/hydroxides for Zn, Pb and Cd and in easily oxidizable solids/compounds form for Cu, respectively. The heavy metal distribution patterns implied that Fe/Mn oxides both in NSCSs and SSs were more important sinks for binding and adsorption of Zn, Pb and Cd than organic matter (OM), and inversely, higher affinity of Cu to OM than Fe/Mn oxides in NSCSs and SSs was obtained. Meanwhile, it was found that the distributions of heavy metals in NSCSs and SSs were similar to each other and the pseudo-total concentrations of Zn, Cu, Pb and Cd in NSCSs were greater than those in SSs, highlighting the more importance for NSCSs than SSs in controlling behaviours of heavy metals in aquatic environments.展开更多
The adsorption kinetics of five heavy metals onto the natural surface coatings, which were collected in the Nanhu Lake in Changchun, Jilin Province, China, were investigated for the purpose of giving some explanations...The adsorption kinetics of five heavy metals onto the natural surface coatings, which were collected in the Nanhu Lake in Changchun, Jilin Province, China, were investigated for the purpose of giving some explanations for the mechanisms of heavy metal adsorption onto the surface coatings with initial metal ions of 5 μmol/L. The results show that firstly, the adsorption of heavy metals onto the surface coatings follows the first order kinetics; secondly, the double-constant rate equation is suitable to describing the adsorption of heavy metals selected onto the natural aquatic surface coatings, following the order K_ Cu>K_ Pb>K_ Co>K_ Ni>K_ Cd; thirdly, there is a significant correlation between the adsorption rate and the physical and chemical characteristics of heavy metals, such as E 0, Δ_fH 0_m, and Δ_fG 0_m based on the linear regression analysis.展开更多
基金Supported by the National Natural Science Foundation of China(No.50879025)the Scientific Start-up Fund from North China Electric Power University, China(No.X60218)the National Basic Research Program of China(No.2004CB3418501).
文摘To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selective chemical extraction technique was employed, to remove the different components, and the adsorption characteristics of AT on the SSs and the NSCSs were investigated. The observed adsorptions of AT on the original and extracted SSs and NSCSs were analyzed by nonlinear least squares fitting(NLSF) to estimate the relative contribution of the components. The results showed that the maximum adsorption of AT on the NSCSs was greater than that in the SSs, before and after extraction treatments, implying that the NSCSs were more dominant than the SSs for organic pollutant adsorption. It was also found that the Fe oxides, OMs, and residues in SSs(NSCSs) facilitated the adsorption of AT, but Mn oxides directly or indirectly restrained the interaction of AT with SSs(NSCSs) particles. The contribution of the Fe oxides to AT adsorption was more than that of OMs; the greatest contribution to AT adsorption on a molar basis was from the Fe oxides in the nonresidual fractions, indicating that the Fe oxides played an important role in controlling the environmental behavior of AT in an aquatic environment.
基金The National Basic Research Program (973) of China (No. 2004CB3418501)
文摘The dynamics of Cd scavenging from solutions by Fe/Mn oxides in natural surface coatings (NSCs) was investigated under laboratory conditions. Selective extraction methods were employed to estimate the contributions of Fe/Mn oxides, where hydroxylamine hydrochloride (0.01 mol/L NH2OH-HCl + 0.01 mol/L HNO3), sodium dithionite (0.4 mol/L Na2S2O4) and nitric acid (10% HNO3) were used as extraction reagents. The Cd scavenging was accomplished with developing periods of the NSCs (totally 21 data sets). The resulting process dynamics fitted well to the Elovich equation, demonstrating that the amount of Cd scavenged was proportional to the increments of Fe/Mn oxides that were accumulated in the NSCs. The amount of Cd bound to Fe oxides (MCdFe) and Mn oxides (MCdMn) could be quantified by solving two equations based on the properties of two extraction reagents. The amount of Cd scavenged by Fe/Mn oxides could also be estimated using MCdFe and MCdMn divided by the total amounts of Fe and Mn oxides in the NSCs, respectively. The results indicated that the Cd scavenging by Fe/Mn oxides was dominated by Fe oxides, with less roles attributed to Mn oxides. The estimated levels of Cd scavenging through Fe and Mn oxides agreed well with those predicted through additive-adsorption and linear-regression models.
基金Supported by the National Natural Science Foundation of China(No.20877033)the Major Science and Technology Pro-gram for Water Pollution Control and Treatment, China(No.2009ZX07207-001-03)
文摘Multistage sequential extraction with different sequences was applied to extracting natural surface coa tings(NSCs), and the results were compared with those by single stage extraction technique. The optimal sequential extraction scheme with the best performance was selected and incorporated into the method of selective extraction followed by adsorption and statistic analyses to study the adsorption parameters of Fe oxides, Mn oxides and organic matters in NSCs for Pb and Cd, to validate the applicability of the sequential extraction scheme. The Langmuir ad sorption parameters of each component of surface coating estimated according to the adsorption data of single stage extraction of NSCs were all similar to those of sequential extraction of NSCs, and the maximum difference between the metal adsorption abilities of the components estimated via the two extraction techniques was only about 20%, in dicating that either extraction techniques could be used. The optimal sequential extraction scheme obtained was first extracted with NH2OH·HCl, then with Na2S2O4, and finally with oxalic acid.
文摘Natural freshwater surface coatings(biofilms and associated minerals), which were developed in the Nanhu Lake, Changchun, P. R. China, were used as an efficient biosorbent for the removal of Cd(Ⅱ) from aqueous solutions. The batch experiments were carried out to determine the adsorption properties of Cd(Ⅱ) onto the natural surface coatings. The classical Langmuir adsorption isotherm was applied to estimating the equilibrium coefficients of Cd(Ⅱ) adsorbed on the surface coatings. The results show that the maximum adsorption capacity of the surface coatings is 434.78 μmol Cd/m2(being equal to 0.17 mmol Cd/g of surface coatings or 10.38 mmol Cd/g Fe) and the Cd(Ⅱ) removal from solution media by the natural surface coatings was shown to be strongly affected by solution pH and ion strength. The resulted information also indicates that the maximum Cd removal efficiency(CRE) was determined to be approximately 90% at initial Cd mass concentration of 0.1 mg/L(the concentration limit of Cd (Ⅱ) in wastewaters for discharge in aquatic media in Chinese legislation), and the kinetic adsorption of Cd(Ⅱ) onto the surface coatings is fast with around 70% of the total adsorption-taking place in 150 min in solution under the controlled laboratory conditions (mineral salts solution with defined speciation, ionic strength 0.05 mol/L, and 25 ℃). With the advantage of high Cd adsorption capacity, the natural surface coatings appear to be a potentially effective biosorbent for the removal and recovery of Cd (Ⅱ) from polluted water.
基金The National Basic Research Program (973) of China (No. 2004CB3418500)
文摘Natural surface coating samples (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the relationship between NSCSs and SSs in fractions of heavy metals (Fe, Mn, Zn, Cu, Pb, and Cd) using the modified sequential extraction procedure (MSEP). The results show that the differences between NSCSs and SSs in Fe fi'actions were insignificant and Fe was dominantly present as residual phase (76.22% for NSCSs and 80.88% for SSs) and Fe-oxides phase (20.33% for NSCSs and 16.15% for SSs). Significant variation of Mn distribution patterns between NSCSs and SSs was observed with Mn in NSCSs mainly present in Mn-oxides phase (48.27%) and that in SSs present as residual phase (45.44%). Zn, Cu, Pb and Cd were found dominantly in residual fractions (〉48%), and next in solid oxides/hydroxides for Zn, Pb and Cd and in easily oxidizable solids/compounds form for Cu, respectively. The heavy metal distribution patterns implied that Fe/Mn oxides both in NSCSs and SSs were more important sinks for binding and adsorption of Zn, Pb and Cd than organic matter (OM), and inversely, higher affinity of Cu to OM than Fe/Mn oxides in NSCSs and SSs was obtained. Meanwhile, it was found that the distributions of heavy metals in NSCSs and SSs were similar to each other and the pseudo-total concentrations of Zn, Cu, Pb and Cd in NSCSs were greater than those in SSs, highlighting the more importance for NSCSs than SSs in controlling behaviours of heavy metals in aquatic environments.
文摘The adsorption kinetics of five heavy metals onto the natural surface coatings, which were collected in the Nanhu Lake in Changchun, Jilin Province, China, were investigated for the purpose of giving some explanations for the mechanisms of heavy metal adsorption onto the surface coatings with initial metal ions of 5 μmol/L. The results show that firstly, the adsorption of heavy metals onto the surface coatings follows the first order kinetics; secondly, the double-constant rate equation is suitable to describing the adsorption of heavy metals selected onto the natural aquatic surface coatings, following the order K_ Cu>K_ Pb>K_ Co>K_ Ni>K_ Cd; thirdly, there is a significant correlation between the adsorption rate and the physical and chemical characteristics of heavy metals, such as E 0, Δ_fH 0_m, and Δ_fG 0_m based on the linear regression analysis.