The current ventilation condition of the hot and humid regions was analyzed through on-site investigation. It is found that residents in this region expect to improve indoor thermal environment through natural ventila...The current ventilation condition of the hot and humid regions was analyzed through on-site investigation. It is found that residents in this region expect to improve indoor thermal environment through natural ventilation as much as possible. Then,it comes to a conclusion by the field test that natural ventilation has certain practical effect on improving indoor thermal environment. CFD simulation software is employed to verify the test result. Based on PMV modified model,and according to norms,geography and climate combined with the measured and simulated results,the application of the time and effectiveness of natural ventilation in hot and humid region were analyzed,to some extent,providing a basis for reducing the air-conditioner's runtime with natural ventilation.展开更多
The acceleration of industrialization worsening indoor environments of industrial buildings has drawn more attention in recent years.Natural ventilation can improve indoor air quality(IAQ)and reduce carbon emissions.T...The acceleration of industrialization worsening indoor environments of industrial buildings has drawn more attention in recent years.Natural ventilation can improve indoor air quality(IAQ)and reduce carbon emissions.To evaluate gaseous pollutant levels in industrial buildings for the development of buoyancy-driven natural ventilation,two theoretical models of pollutant flushing(Model I and Model II)are developed based on the existing thermal stratification theory in combination with the mixing characteristics of lower pollutant.The results show that indoor pollutant flushing is mainly dependent on the pollution source intensity and effective ventilation area.The mixing characteristics of lower pollutant has an important effect on pollutant stratification and evolution during ventilation,but it does not change the prediction results at steady state.When the dimensionless pollution source intensity is larger than 1,the pollution source should be cleaned up or other ventilation methods should be used instead to improve IAQ.In addition,the comparisons between Model I and Model II on instantaneous pollutant concentration are significantly influenced by the pollution source intensity,and the actual pollutant concentration is more likely to be between the predicted values of Model I and Model II.To reduce pollutant concentration to a required level,the pollution source intensity should be in a certain range.The theoretical models as well as the necessary conditions for ventilation effectiveness obtained can be used for the ventilation optimization design of industrial buildings.展开更多
Based on the current indoor natural ventilation and lighting in the space of traditional residential buildings,this paper starts from the passive-design optimization of the spatial natural ventilation and lighting,and...Based on the current indoor natural ventilation and lighting in the space of traditional residential buildings,this paper starts from the passive-design optimization of the spatial natural ventilation and lighting,and makes quantitative evaluation on the quality of current interior natural ventilation and lighting for two typical residential buildings by three indexes,including wind speed,static wind area ratio and satisfaction ratio about minimum lighting coefficient. Based on that, this paper conducts the passive design optimization, and establishes the quantitative association and reevaluation among the passive reformation design, natural ventilation,and lighting environmental quality,proposing the general strategy for the existing residential buildings to respond to the passive reformation design of the natural ventilation and lighting. The special reconstruction of core functionary space of integration of "the living room + dining room + partial space"is researched,and the redesign for the optimization and replacement of both indoor and outdoor enclosure parts is explored,which is expected to provide practical exploration on the strategies for passive construction of spatial natural environmental quality within a large number of highly-energy-consumed residential buildings in China,as well as the green design of residential buildings.展开更多
Planting trees around buildings has always been used as one of the most common viable landscaping strategies in schools.However,the impact of trees on natural ventilation inside the building has been neglected without...Planting trees around buildings has always been used as one of the most common viable landscaping strategies in schools.However,the impact of trees on natural ventilation inside the building has been neglected without investigation.The emphasis of this study related to the impact of outdoor trees around the academic building on indoor ventilation.Numerical simulations of the indoor wind environment of the academic building affected by trees were performed utilizing the k-εmodel with additional source terms.The numerical model was also validated by measured data.Two kinds of trees were selected,they are camphor and metasequoia.Camphor is a kind of broad-leaved tree and metasequoia is a kind of coniferous tree.26 simulation cases with six different tree canopy spacings were conducted.These results showed that the outdoor trees had great influences on the natural ventilation performance of the academic building.Compared with the case without the trees,the highest decrement in ventilation flow rate could be up to 31.97%in this study.For the cases of classrooms with horizontal distribution,the ages of air of the classrooms became fresher with the increase of the canopy spacing.While for the cases of classrooms with vertical distribution,the canopy spacing had fewer effects on the natural ventilation performances.It was also found that the blocking effects of camphor on indoor ventilation were higher than that of metasequoia.The average ventilation flow rate in cases with metasequoia was increased by 14.89%compared to the cases with camphor.This study could provide guidance for the layout design of trees around the building.展开更多
Natural ventilation is particularly important for residential high-rise buildings as it maintains indoor human comfort without incurring the energy demands that air-conditioning does.To improve a building’s natural v...Natural ventilation is particularly important for residential high-rise buildings as it maintains indoor human comfort without incurring the energy demands that air-conditioning does.To improve a building’s natural ventilation,it is essential to develop models to understand the relationship between wind flow characteristics and the building's design.Significantly more effort is still needed for developing such reliable,accurate,and computationally economical models instead of currently the most popular physics-based models such as computational fluid dynamics(CFD)simulation.This paper,therefore,presents a novel model developed based on physics-based modelling and a data-driven approach to evaluate natural ventilation in residential high-rise buildings.The model first uses CFD to simulate wind pressures on the exterior surfaces of a high-rise building.Once the surface pressures have been obtained,multizone modelling is used to predict the air change per hour(ACH)for different flats in various configurations.Data-driven prediction models are then developed using data from the simulation and deep neural networks that are based on mean absolute error,mean absolute percentage error,and a fusion algorithm respectively.These data-driven models are used to predict the ACH of 25 flats.The results from multizone modelling and data-driven modelling are compared.The results imply a high accuracy of the data-driven prediction in comparison with physics-based models.The fusion algorithm-based neural network performs best,achieving 96%accuracy,which is the highest of all models tested.This study contributes a more efficient and robust method for predicting wind-induced natural ventilation.The findings describe the relationship between building design(e.g.,plan layout),distribution of surface pressure,and the resulting ACH,which serve to improve the practical design of sustainable buildings.展开更多
Construction and operation of buildings are responsible for about 20%of the global energy consumption.The embodied energy of conventional buildings is high due to the utilization of energy-intensive construction mate-...Construction and operation of buildings are responsible for about 20%of the global energy consumption.The embodied energy of conventional buildings is high due to the utilization of energy-intensive construction mate-rials and traditional construction methodology.Higher operational energy is attributed to the usage of power-consuming conventional air-conditioning systems.Therefore,moving to an energy-efficient cooling technology and eco-friendly building material can lead to significant energy savings and CO 2 emission reduction.In the present study,an energy-efficient thermally activated building system(TABS)is integrated with glass fiber rein-forced gypsum(GFRG),an eco-friendly building material.The proposed hybrid system is termed the thermally activated glass fiber reinforced gypsum(TAGFRG)system.This system is not only energy-efficient and eco-friendly but also provides better thermal comfort.An experimental room with a TAGFRG roof is constructed on the premises of the Indian Institute of Technology Madras(IITM),Chennai,located in a tropical wet and dry climate zone.The influence of indoor sensible heat load and the impact of natural ventilation on the thermal comfort of the TAGFRG system are investigated.An increase in internal heat load from 400 to 700 W deteriorates the thermal comfort of the indoor space.This is evident from the increases in operative temperatures from 29.8 to 31.5℃ and the predicted percentage of dissatisfaction from 44.5%to 80.9%.Natural ventilation increases the diurnal fluctuation of indoor air temperature by 1.6 and 1.9℃ for with and without cooling cases,respectively.It reduces the maximum indoor CO 2 concentration from 912 to 393 ppm.展开更多
Natural ventilation(NV)has been considered a simple and effective method of ventilation.However,the intro-duction of NV does not achieve better indoor air quality(IAQ)when the outdoor atmospheric environment is pollut...Natural ventilation(NV)has been considered a simple and effective method of ventilation.However,the intro-duction of NV does not achieve better indoor air quality(IAQ)when the outdoor atmospheric environment is polluted.Therefore,portable air cleaners(PACs)are increasing in use in recent years,but their effectiveness is highly dependent on the residents’habits.A typical residence in Xi’an,China was selected to examine the effects of the use of NV alone and the use of NV and PACs together on IAQ in the three occupant states,i.e.,unoc-cupied,sleeping and leisure.Parameters,such as temperature,relative humidity,CO_(2),and PM_(2.5)concentration were measured when changing the window opening and the position of the PAC.The results showed that in the unoccupied state,opening the inner door can promote a more uniform thermal and humid environment.In the sleeping state,the I/O ratio of the PM_(2.5)concentration was the lowest when the window opening of the bedroom was 1/2 or 3/4,with a mean value of 0.3.In the leisure state,only using NV,when the purification rate reaches 90%,the mean purification time of each window opening in the living room is 87.5 min.The mean purification time was reduced to 25 min when both NV and PAC were used.The on-site purification efficiencies were 91.0%and 94.5%,when the window opening was 1/2(i.e.,the PAC was placed in the center of the room)and 3/4(i.e.,the PAC was placed away from the outer window),respectively.展开更多
Natural ventilation is recognized for improving the thermal comfort of the built environment and indoor air quality.It provides comfortable conditions for building occupants and reduces energy consumption for air-cond...Natural ventilation is recognized for improving the thermal comfort of the built environment and indoor air quality.It provides comfortable conditions for building occupants and reduces energy consumption for air-conditioning.Therefore,it is important to study and explore effective means of ventilation to improve the building designs.This study investigates the thermal comfort of a naturally ventilated hostel operational building in the composite climate of Jaipur,India using Computational Fluid Dynamics(CFD)simulation tool‘Cradle scSTREAM’.A 3D building model has been developed to analyze the thermal comfort for different natural ventilation strategies with advanced mesh algorithms which generate fewer mesh elements and maintain good mesh quality.A field study was carried out to collect the actual data and to validate the model which was further used to evaluate the thermal comfort range based on the ASHRAE-55 standard.Several design strategies have been applied to enhance thermal comfort.It was found that an increase in air velocity up to 0.5 m/s was achieved by Cross Ventilation while a drop of 2.0-2.5℃in the air temperature was found using Night Ventilation.It can be stated that cross ventilation increases the air movement while night ventilation gives comparatively higher comfort regarding air temperature and relative humidity.展开更多
Good natural ventilation is the basic function of residential buildings in hot summer and cold winter areas. The intensive use of urban land makes high-rise residential units adopt a large number of multi-household la...Good natural ventilation is the basic function of residential buildings in hot summer and cold winter areas. The intensive use of urban land makes high-rise residential units adopt a large number of multi-household layouts, and the middle households are often difficult to penetrate from north and south, and the natural ventilation effect is not good. The application of a utility model patent "building interlayer ventilation channel" can improve this situation. This paper mainly introduced the basic form and functional characteristics of the patent, and discussed its advantages in detail.展开更多
气溶胶是悬浮于空气中的微小颗粒物质,对人体呼吸系统健康具有严重危害。作为室内外空气流通的关键过渡空间,公共建筑入口的不同设计形式对室内空气质量(IAQ,Indoor Air Quality)产生显著影响。通过文献综述和实地调研,选取合肥市36座...气溶胶是悬浮于空气中的微小颗粒物质,对人体呼吸系统健康具有严重危害。作为室内外空气流通的关键过渡空间,公共建筑入口的不同设计形式对室内空气质量(IAQ,Indoor Air Quality)产生显著影响。通过文献综述和实地调研,选取合肥市36座公共建筑的入口设计形式进行特征提取,归纳出了平入口、有雨棚的平入口和凹入口三类典型入口形式模型;利用计算流体力学(CFD)数值模拟方法建立了空气流场和气溶胶扩散分布模型,对模型的不同精度网格展开模拟结果的网格无关性验证;并在此基础上,利用现场实测数据进行了模拟数据的对比验证;探讨了三类不同入口形式下室内气溶胶的扩散路径和分布特征。结果表明:1)室内气溶胶浓度与空气流动之间存在显著的关联性。空气流动速率越大,气溶胶浓度越低;空气流动速率越小,气溶胶浓度越高;2)转角空间或狭小空间容易形成涡流,涡流会导致空气滞留,阻碍气溶胶扩散,进而导致局部区域的气溶胶浓度增加;3)有雨棚的平入口的气溶胶进入量略小于无雨棚平入口,占比无雨棚平入口的92.8%,但其室内气溶胶残留量为23.6%,高出无雨棚平入口7.3%;4)室内气溶胶残留量占比从高到低排列为:有雨棚的平入口(23.6%)>平入口(16.3%)>凹入口(14.8%),凹入口在自然通风情况下气溶胶的扩散得到了有效抑制,室内气溶胶残留量最低。建议在设计中采用凹型入口,避免采用大体量雨棚,有利于自然通风,提升建筑出入口空间的空气质量。展开更多
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProject(2006BAJ01A05) supported by the National Key Technologies R&D Program of ChinaProject(CSTC,2008AB7110) supported by Key Technologies R & D Program of Chongqing City,China
文摘The current ventilation condition of the hot and humid regions was analyzed through on-site investigation. It is found that residents in this region expect to improve indoor thermal environment through natural ventilation as much as possible. Then,it comes to a conclusion by the field test that natural ventilation has certain practical effect on improving indoor thermal environment. CFD simulation software is employed to verify the test result. Based on PMV modified model,and according to norms,geography and climate combined with the measured and simulated results,the application of the time and effectiveness of natural ventilation in hot and humid region were analyzed,to some extent,providing a basis for reducing the air-conditioner's runtime with natural ventilation.
基金This work is supported by the National Key Research and Development Program(No.2018YFC0705305)the Fundamental Research Funds for the Central University of Donghua University(No.2232017A-09).
文摘The acceleration of industrialization worsening indoor environments of industrial buildings has drawn more attention in recent years.Natural ventilation can improve indoor air quality(IAQ)and reduce carbon emissions.To evaluate gaseous pollutant levels in industrial buildings for the development of buoyancy-driven natural ventilation,two theoretical models of pollutant flushing(Model I and Model II)are developed based on the existing thermal stratification theory in combination with the mixing characteristics of lower pollutant.The results show that indoor pollutant flushing is mainly dependent on the pollution source intensity and effective ventilation area.The mixing characteristics of lower pollutant has an important effect on pollutant stratification and evolution during ventilation,but it does not change the prediction results at steady state.When the dimensionless pollution source intensity is larger than 1,the pollution source should be cleaned up or other ventilation methods should be used instead to improve IAQ.In addition,the comparisons between Model I and Model II on instantaneous pollutant concentration are significantly influenced by the pollution source intensity,and the actual pollutant concentration is more likely to be between the predicted values of Model I and Model II.To reduce pollutant concentration to a required level,the pollution source intensity should be in a certain range.The theoretical models as well as the necessary conditions for ventilation effectiveness obtained can be used for the ventilation optimization design of industrial buildings.
基金Sponsored by the Key Project of National Natural Science Foundation of China (Grant No.51138004)the South China Key Laboratory Fund (Grant No.20121458321)the Architect Design on Energy-saving Residence in Shanghai (Grant No.08-2A-0183-zong)
文摘Based on the current indoor natural ventilation and lighting in the space of traditional residential buildings,this paper starts from the passive-design optimization of the spatial natural ventilation and lighting,and makes quantitative evaluation on the quality of current interior natural ventilation and lighting for two typical residential buildings by three indexes,including wind speed,static wind area ratio and satisfaction ratio about minimum lighting coefficient. Based on that, this paper conducts the passive design optimization, and establishes the quantitative association and reevaluation among the passive reformation design, natural ventilation,and lighting environmental quality,proposing the general strategy for the existing residential buildings to respond to the passive reformation design of the natural ventilation and lighting. The special reconstruction of core functionary space of integration of "the living room + dining room + partial space"is researched,and the redesign for the optimization and replacement of both indoor and outdoor enclosure parts is explored,which is expected to provide practical exploration on the strategies for passive construction of spatial natural environmental quality within a large number of highly-energy-consumed residential buildings in China,as well as the green design of residential buildings.
基金supported by Ministry of Science and Technology of China (No.2020YFC1522304)the Natural Science Foundation of China (No.52078118)the Opening Fund of State Key Laboratory of Green Building in Western China (No.LSKF202107).
文摘Planting trees around buildings has always been used as one of the most common viable landscaping strategies in schools.However,the impact of trees on natural ventilation inside the building has been neglected without investigation.The emphasis of this study related to the impact of outdoor trees around the academic building on indoor ventilation.Numerical simulations of the indoor wind environment of the academic building affected by trees were performed utilizing the k-εmodel with additional source terms.The numerical model was also validated by measured data.Two kinds of trees were selected,they are camphor and metasequoia.Camphor is a kind of broad-leaved tree and metasequoia is a kind of coniferous tree.26 simulation cases with six different tree canopy spacings were conducted.These results showed that the outdoor trees had great influences on the natural ventilation performance of the academic building.Compared with the case without the trees,the highest decrement in ventilation flow rate could be up to 31.97%in this study.For the cases of classrooms with horizontal distribution,the ages of air of the classrooms became fresher with the increase of the canopy spacing.While for the cases of classrooms with vertical distribution,the canopy spacing had fewer effects on the natural ventilation performances.It was also found that the blocking effects of camphor on indoor ventilation were higher than that of metasequoia.The average ventilation flow rate in cases with metasequoia was increased by 14.89%compared to the cases with camphor.This study could provide guidance for the layout design of trees around the building.
基金supported by the Hong Kong University of Science and Technology Research Grant(project no.IGN17EG04).
文摘Natural ventilation is particularly important for residential high-rise buildings as it maintains indoor human comfort without incurring the energy demands that air-conditioning does.To improve a building’s natural ventilation,it is essential to develop models to understand the relationship between wind flow characteristics and the building's design.Significantly more effort is still needed for developing such reliable,accurate,and computationally economical models instead of currently the most popular physics-based models such as computational fluid dynamics(CFD)simulation.This paper,therefore,presents a novel model developed based on physics-based modelling and a data-driven approach to evaluate natural ventilation in residential high-rise buildings.The model first uses CFD to simulate wind pressures on the exterior surfaces of a high-rise building.Once the surface pressures have been obtained,multizone modelling is used to predict the air change per hour(ACH)for different flats in various configurations.Data-driven prediction models are then developed using data from the simulation and deep neural networks that are based on mean absolute error,mean absolute percentage error,and a fusion algorithm respectively.These data-driven models are used to predict the ACH of 25 flats.The results from multizone modelling and data-driven modelling are compared.The results imply a high accuracy of the data-driven prediction in comparison with physics-based models.The fusion algorithm-based neural network performs best,achieving 96%accuracy,which is the highest of all models tested.This study contributes a more efficient and robust method for predicting wind-induced natural ventilation.The findings describe the relationship between building design(e.g.,plan layout),distribution of surface pressure,and the resulting ACH,which serve to improve the practical design of sustainable buildings.
基金The authors thank the Department of Science and Technology(DST),Government of India,New Delhi for funding this study(Reference No.:SR/S3/MERC/00091/2012).
文摘Construction and operation of buildings are responsible for about 20%of the global energy consumption.The embodied energy of conventional buildings is high due to the utilization of energy-intensive construction mate-rials and traditional construction methodology.Higher operational energy is attributed to the usage of power-consuming conventional air-conditioning systems.Therefore,moving to an energy-efficient cooling technology and eco-friendly building material can lead to significant energy savings and CO 2 emission reduction.In the present study,an energy-efficient thermally activated building system(TABS)is integrated with glass fiber rein-forced gypsum(GFRG),an eco-friendly building material.The proposed hybrid system is termed the thermally activated glass fiber reinforced gypsum(TAGFRG)system.This system is not only energy-efficient and eco-friendly but also provides better thermal comfort.An experimental room with a TAGFRG roof is constructed on the premises of the Indian Institute of Technology Madras(IITM),Chennai,located in a tropical wet and dry climate zone.The influence of indoor sensible heat load and the impact of natural ventilation on the thermal comfort of the TAGFRG system are investigated.An increase in internal heat load from 400 to 700 W deteriorates the thermal comfort of the indoor space.This is evident from the increases in operative temperatures from 29.8 to 31.5℃ and the predicted percentage of dissatisfaction from 44.5%to 80.9%.Natural ventilation increases the diurnal fluctuation of indoor air temperature by 1.6 and 1.9℃ for with and without cooling cases,respectively.It reduces the maximum indoor CO 2 concentration from 912 to 393 ppm.
基金This study was jointly funded by the National Key Research and Development Program of China(No.2016YFC0700500)the Opening Fund of Key Laboratory of Plateau Green Building and Ecological Community in Qinghai Province(No.KLKF-2020-005).
文摘Natural ventilation(NV)has been considered a simple and effective method of ventilation.However,the intro-duction of NV does not achieve better indoor air quality(IAQ)when the outdoor atmospheric environment is polluted.Therefore,portable air cleaners(PACs)are increasing in use in recent years,but their effectiveness is highly dependent on the residents’habits.A typical residence in Xi’an,China was selected to examine the effects of the use of NV alone and the use of NV and PACs together on IAQ in the three occupant states,i.e.,unoc-cupied,sleeping and leisure.Parameters,such as temperature,relative humidity,CO_(2),and PM_(2.5)concentration were measured when changing the window opening and the position of the PAC.The results showed that in the unoccupied state,opening the inner door can promote a more uniform thermal and humid environment.In the sleeping state,the I/O ratio of the PM_(2.5)concentration was the lowest when the window opening of the bedroom was 1/2 or 3/4,with a mean value of 0.3.In the leisure state,only using NV,when the purification rate reaches 90%,the mean purification time of each window opening in the living room is 87.5 min.The mean purification time was reduced to 25 min when both NV and PAC were used.The on-site purification efficiencies were 91.0%and 94.5%,when the window opening was 1/2(i.e.,the PAC was placed in the center of the room)and 3/4(i.e.,the PAC was placed away from the outer window),respectively.
文摘Natural ventilation is recognized for improving the thermal comfort of the built environment and indoor air quality.It provides comfortable conditions for building occupants and reduces energy consumption for air-conditioning.Therefore,it is important to study and explore effective means of ventilation to improve the building designs.This study investigates the thermal comfort of a naturally ventilated hostel operational building in the composite climate of Jaipur,India using Computational Fluid Dynamics(CFD)simulation tool‘Cradle scSTREAM’.A 3D building model has been developed to analyze the thermal comfort for different natural ventilation strategies with advanced mesh algorithms which generate fewer mesh elements and maintain good mesh quality.A field study was carried out to collect the actual data and to validate the model which was further used to evaluate the thermal comfort range based on the ASHRAE-55 standard.Several design strategies have been applied to enhance thermal comfort.It was found that an increase in air velocity up to 0.5 m/s was achieved by Cross Ventilation while a drop of 2.0-2.5℃in the air temperature was found using Night Ventilation.It can be stated that cross ventilation increases the air movement while night ventilation gives comparatively higher comfort regarding air temperature and relative humidity.
文摘Good natural ventilation is the basic function of residential buildings in hot summer and cold winter areas. The intensive use of urban land makes high-rise residential units adopt a large number of multi-household layouts, and the middle households are often difficult to penetrate from north and south, and the natural ventilation effect is not good. The application of a utility model patent "building interlayer ventilation channel" can improve this situation. This paper mainly introduced the basic form and functional characteristics of the patent, and discussed its advantages in detail.
文摘气溶胶是悬浮于空气中的微小颗粒物质,对人体呼吸系统健康具有严重危害。作为室内外空气流通的关键过渡空间,公共建筑入口的不同设计形式对室内空气质量(IAQ,Indoor Air Quality)产生显著影响。通过文献综述和实地调研,选取合肥市36座公共建筑的入口设计形式进行特征提取,归纳出了平入口、有雨棚的平入口和凹入口三类典型入口形式模型;利用计算流体力学(CFD)数值模拟方法建立了空气流场和气溶胶扩散分布模型,对模型的不同精度网格展开模拟结果的网格无关性验证;并在此基础上,利用现场实测数据进行了模拟数据的对比验证;探讨了三类不同入口形式下室内气溶胶的扩散路径和分布特征。结果表明:1)室内气溶胶浓度与空气流动之间存在显著的关联性。空气流动速率越大,气溶胶浓度越低;空气流动速率越小,气溶胶浓度越高;2)转角空间或狭小空间容易形成涡流,涡流会导致空气滞留,阻碍气溶胶扩散,进而导致局部区域的气溶胶浓度增加;3)有雨棚的平入口的气溶胶进入量略小于无雨棚平入口,占比无雨棚平入口的92.8%,但其室内气溶胶残留量为23.6%,高出无雨棚平入口7.3%;4)室内气溶胶残留量占比从高到低排列为:有雨棚的平入口(23.6%)>平入口(16.3%)>凹入口(14.8%),凹入口在自然通风情况下气溶胶的扩散得到了有效抑制,室内气溶胶残留量最低。建议在设计中采用凹型入口,避免采用大体量雨棚,有利于自然通风,提升建筑出入口空间的空气质量。