期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Lattice Boltzmann method formulation for simulation of thermal radiation effects on non-Newtonian Al_(2)O_(3) free convection in entropy determination
1
作者 M.NEMATI M.SEFID +1 位作者 A.KARIMIPOUR A.J.CHAMKHA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1085-1106,共22页
The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existen... The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research. 展开更多
关键词 thermal performance analysis heat absorption/generation power-law(PL)Al_(2)O_(3)nanofluid magnetohydrodynamics natural convection volumetric radiation inclined cavity
下载PDF
Convection and Stratification of Temperature and Concentration
2
作者 Alexey Fedyushkin 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1351-1364,共14页
This study is devoted to an analysis of natural convection and the emergence of delamination in an incompressible fluid encapsulated in a closed region heated from the side.Weak,medium and intensive modes of stationar... This study is devoted to an analysis of natural convection and the emergence of delamination in an incompressible fluid encapsulated in a closed region heated from the side.Weak,medium and intensive modes of stationary laminar thermal and thermo-concentration convection are considered.It is shown that nonlinear flow features can radically change the flow structure and characteristics of heat and mass transfer.Moreover,the temperature and concentration segregation in the center of the square region display a non-monotonic dependence on the Grashof number(flow intensity).The formation of a nonstationary periodic structure of thermal convection in boundary layers and in the core of a convective flow in the closed region is also examined.Details of the formation of countercurrents inside the region with the direction opposite to the main convective flow are given.Finally,the influence of vertical and horizontal vibrations on oscillatory convection is analyzed in detail. 展开更多
关键词 Natural convection STRATIFICATION SEGREGATION numerical simulation vibrations
下载PDF
Updated Lagrangian Particle Hydrodynamics (ULPH)Modeling of Natural Convection Problems
3
作者 Junsong Xiong Zhen Wang +3 位作者 Shaofan Li Xin Lai Lisheng Liu Xiang Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期151-169,共19页
Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat t... Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems. 展开更多
关键词 Updated Lagrangian particle hydrodynamics(ULPH) natural convection meshless methods higher order Laplacian model
下载PDF
Natural Convection of a Power-Law Nanofluid in a Square Cavity with a Vertical Fin
4
作者 Amira M’hadbi Mohammed El Ganaoui +2 位作者 Haïkel Ben Hamed Amenallah Guizani Khalid Chtaibi 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2091-2108,共18页
The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanoflu... The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanofluids,composed of water and Al_(2)O_(3),TiO_(2),and Cu nanoparticles,on heat transfer enhancement is examined.The aim of this research is also to analyze the influence of different parameters,including the Rayleigh number(Ra=10^(4)-10^(6)),nanoparticle volume fraction(φ=0%-20%),non-Newtonian power-law indexes(n=0.6-1.4),and fin dimensions(Ar=0.3,0.5,and 0.7).Streamlines and isotherms are used to depict flow and related heat transfer characteristics.Results indicate that thermal performance improves with increasing Rayleigh number,regardless of the nanoparticle type or nanofluid rheological behavior.This suggests that the buoyancy force has a significant impact on heat transfer,particularly near the heat source.The Nusselt number is more sensitive to variations in Cu nanoparticle volume fractions compared to Al₂O₃and TiO₂.Moreover,the average Nusselt numbers for power-law nanofluids with n<1(n>1)are greater(smaller)than for Newtonian fluids due to the decrease(increase)in viscosity with increasing(decreasing)shear rate,at the same values of Rayleigh number Ra owing to the amplification(attenuation)of the convective transfer.Notably,the most substantial enhancement is observed with Cu-water shear-thinning nanofluid,where the Nusselt number increases by 136%when changing from Newtonian to shear thinning behavior and by 154.9%when adding 16%nanoparticle volume fraction.Moreover,an even larger increase of 57%in the average Nusselt number is obtained on increasing the fin length from 0.3 to 0.7. 展开更多
关键词 Heat transfer NANOFLUID non-Newtonian fluid natural convection
下载PDF
Simulation of inclined dendrites under natural convection by KKS phase field model based on CUDA 被引量:1
5
作者 Chang-sheng Zhu Tian-yu Li +2 位作者 Bo-rui Zhao Cang-long Wang Zi-hao Gao 《China Foundry》 SCIE CAS CSCD 2023年第5期432-442,共11页
In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low seria... In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low serial computing efficiency of a traditional CPU and achieve significant acceleration.This model was used to explore the evolution of dendrite growth under natural convection.Through the study of the tip velocities,it is found that the growth of the dendrite arms at the bottom is inhibited while the growth of the dendrite arms at the top is promoted by natural convection.In addition,research on the inclined dendrite under natural convection was conducted.It is observed that there is a deviation between the actual growth direction and the preferred angle of the inclined dendrite.With the increase of the preferred angle of the seed,the difference between the actual growth direction and the initial preferred angle of the inclined dendrite shows a trend of increasing at first and then decreasing.In the simulation area,the relative deflection directions of the primary dendrite arms in the top right corner and the bottom left corner of the same dendrite are almost counterclockwise,while the relative deflection directions of the other two primary dendrite arms are clockwise. 展开更多
关键词 PF-LBM natural convection inclined dendrites CUDA
下载PDF
Numerical Assessment of Nanofluid Natural Convection Using Local RBF Method Coupled with an Artificial Compressibility Model 被引量:1
6
作者 Muneerah Al Nuwairan Elmiloud Chaabelasri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期133-154,共22页
In this paper,natural heat convection inside square and equilateral triangular cavities was studied using a meshless method based on collocation local radial basis function(RBF).The nanofluids used were Cu-water or Al... In this paper,natural heat convection inside square and equilateral triangular cavities was studied using a meshless method based on collocation local radial basis function(RBF).The nanofluids used were Cu-water or Al_(2)O_(3)-water mixture with nanoparticle volume fractions range of 0≤φ≤0.2.A system of continuity,momentum,and energy partial differential equations was used in modeling the flow and temperature behavior of the fluids.Partial derivatives in the governing equations were approximated using the RBF method.The artificial compressibility model was implemented to overcome the pressure velocity coupling problem that occurs in such equations.Themain goal of this work was to present a simple and efficient method to deal with complex geometries for a variety of problem conditions.To assess the accuracy of the proposed method,several test cases of natural convection in square and triangular cavities were selected.For Rayleigh numbers ranging from 103 to 105,a validation test of natural convection of Cu-water in a square cavity was used.The numerical investigation was then extended to Rayleigh number 106,as well as Al_(2)O_(3)-water nanofluid with a volume fraction range of 0≤φ≤0.2.In a second investigation,the same nanofluids were used in a triangular cavitywith varying volume fractions to test the proposed meshless approach on non-rectangular geometries.The numerical results appear to be in agreement with those from earlier investigations.Furthermore,the suggested meshless method was found to be stable and accurate,demonstrating that it may be a viable alternative for solving natural heat transfer equations of nanofluids in enclosures with irregular geometries. 展开更多
关键词 Natural heat convection nanofluids CAVITIES meshless method radial basis function
下载PDF
Simulation of Natural Convection Flow with Magneto-Hydrodynamics in a Wavy Top Enclosure with a Semi-Circular Heater
7
作者 Mohammad Mahfuzul Islam Md. Abdul Alim +1 位作者 Md. Mahmud Alam Md. Jahirul Haque Munshi 《Open Journal of Applied Sciences》 CAS 2023年第4期591-603,共13页
Natural convection flow in enclosure has different applications such as room ventilation, heat exchangers, the cooling system of a building etc. The Finite-Element method based on the Galerkin weighted residual approa... Natural convection flow in enclosure has different applications such as room ventilation, heat exchangers, the cooling system of a building etc. The Finite-Element method based on the Galerkin weighted residual approach is used to solve two-dimensional governing mass, momentum and energy-equations for natural convection flow in the presence of a magnetic field on a roof top with semi-circular heater. In the enclosure the horizontal lower wall was heated, the vertical two walls were adiabatic, inside the semi-circular heater, the wavy top wall cooled. The parameters Rayleigh number, Hartmann number and Prandtl number are considered. The effects of the Hartmann number and Rayleigh number on the streamlines, isotherms, velocity profiles and average Nusselt number are examined graphically. The local Nusselt number and the average Nusselt number of the heated portion of the enclosure with the semi-circular heater are presented in this paper. Finally, for the validation of the existing work, the current results are compared with published results and the auspicious agreement is achieved. 展开更多
关键词 Natural convection Magneto-Hydrodynamics (MHD) Finite Element Method (FEM) Wavy Enclosure Semi-Circular Heater
下载PDF
Evaluation of Water Losses by Evaporation in the Nakanbe Basin
8
作者 Bayala Alfred Kabre Sayouba +5 位作者 Yonli Hamma Fabien Chesneau Xavier Thierry Sikoudouin Maurice Ky Zeghmati Belkacem Kieno P. Florent Kam Sié 《Atmospheric and Climate Sciences》 2024年第1期29-41,共13页
A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e... A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020. 展开更多
关键词 Numerical Study EVAPORATION Meteorological Data Natural convection BASINS DAMS
下载PDF
Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM) 被引量:9
9
作者 M.SHEIKHOLESLAMI M.GORJI-BANDPY G.DOMAIRRY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期833-846,共14页
The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanopa... The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers. 展开更多
关键词 lattice Boltzmann method (LBM) NANOFLUID natural convection concentric annular cavity
下载PDF
Simulation on scrap melting behavior and carbon diffusion under natural convection 被引量:4
10
作者 Ming Gao Jin-tao Gao +1 位作者 Yan-ling Zhang Shu-feng Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期380-389,共10页
A 3D model applying temperature-and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection.Simulated results agreed reason... A 3D model applying temperature-and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection.Simulated results agreed reasonably well with experimental ones.Scrap melting was subdivided into four stages:formation of a solidified layer,rapid melting of the solidified layer,carburization,and carburization+normal melting.The carburization stage could not be ignored at low temperature because the carburization time for the sample investigated was 214 s at 1573 K compared to 12 s at 1723 K.The thickness of the boundary layer with significant concentration difference at 1573 K increased from 130μm at 5 s to 140μm at 60 s.The maximum velocity caused by natural convection decreased from 0.029 m·s^(−1)at 5 s to 0.009 m·s^(−1)at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time. 展开更多
关键词 scrap melting natural convection carbon diffusion numerical simulation electron probe micro-analyzer
下载PDF
Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber 被引量:4
11
作者 Mohsen Izadi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1203-1213,共11页
This study numerically investigates the impact of porous materials,nano-particle types,and their concentrations on transient natural convection heat transfer of nano-fluid inside a porous chamber with a triangular sec... This study numerically investigates the impact of porous materials,nano-particle types,and their concentrations on transient natural convection heat transfer of nano-fluid inside a porous chamber with a triangular section.The governing equations of the two-phase mixture model are separated on the computational domain and solved using the Finite Volume Method,taking into account the Darcy–Brinkman model for porous medium.It was observed that convection heat transfer inside the triangular chamber consists of three stages named initial,transient,and semi-steady.The features of each step are provided in detail.The results suggested that the use of a hybrid nano-fluid(water/aluminum oxide-cooper)inside a porous glass material and an increase in volume fraction of nano-particles have adverse effects on heat transfer rate.In contrast,as the nano-particle volume fraction of the single nano-fluid(water/aluminum oxide)inside the chamber increased,convection heat transfer rate improved.At the same time,it was observed that the use of both nano-fluids(single and hybrid)in the porous environment of the aluminum foam could improve convection. 展开更多
关键词 Transient natural convection Mixture model Darcy-Brinlanan model Rayleigh-Benard instability Triangular chamber
下载PDF
Enhancement of natural convection heat transfer from a fin by triangular perforation of bases parallel and toward its tip 被引量:3
12
作者 Abdullah H.AlEssa Mohamad I.Al-Widyan 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第8期1033-1044,共12页
This study examines the heat transfer enhancement from a horizontal rectangular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissi... This study examines the heat transfer enhancement from a horizontal rectangular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissipation rate is compared to that of an equivalent solid one. The parameters considered are geometrical dimensions and thermal properties of the fin and the perforations. The gain in the heat transfer enhancement and the fin weight reduction due to the perforations are considered. The study shows that the heat dissipation from the perforated fin for a certain range of triangular perforation dimensions and spaces between perforations result in improvement in the heat transfer over the equivalent solid fin. The heat transfer enhancement of the perforated fin increases as the fin thermal conductivity and its thickness are increased. 展开更多
关键词 finned surfaces heat transfer enhancement triangular perforations natural convection finite element perforated fin heat dissipation
下载PDF
Characterization of size effect of natural convection in melting process of phase change material in square cavity 被引量:3
13
作者 曹世豪 王辉 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期400-409,共10页
The accelerating effect of natural convection on the melting of phase change material(PCM)has been extensively demonstrated.However,such an influence is directly dependent on the size and shape of domain in which phas... The accelerating effect of natural convection on the melting of phase change material(PCM)has been extensively demonstrated.However,such an influence is directly dependent on the size and shape of domain in which phase change happens,and how to quantitatively describe such an influence is still challenging.On the other hand,the simulation of natural convection process is considerably difficult,involving complex fluid flow in a region changing with time,and is typically not operable in practice.To overcome these obstacles,the present study aims to quantitatively investigate the size effect of natural convection in the melting process of PCM paraffin filled in a square latent heat storage system through experiment and simulation,and ultimately a correlation equation to represent its contribution is proposed.Firstly,the paraffin melting experiment is conducted to validate the two-dimensional finite element model based on the enthalpy method.Subsequently,a comprehensive investigation is performed numerically for various domain sizes.The results show that the melting behavior of paraffin is dominated by the thermal convection.When the melting time exceeds 50 s,a whirlpoor flow caused by natural convection appears in the upper liquid phase region close to the heating wall,and then its influencing range gradually increases to accelerate the melting of paraffin.However,its intensity gradually decreases as the distance between the melting front and the heating wall increases.Besides,it is found that the correlation between the total melting time and the domain size approximately exhibits a power law.When the domain size is less than 2 mm,the accelerating effect of natural convection becomes very weak and can be ignored in practice.Moreover,in order to simplify the complex calculation of natural convection,the equivalent thermal conductivity concept is proposed to include the contribution of natural convection to the total melting time,and an empirical correlation is given for engineering applications. 展开更多
关键词 phase change material natural convection size effect equivalent thermal conductivity
下载PDF
Effect of induced magnetic field on natural convection in vertical concentric annuli 被引量:2
14
作者 R.K.Singh A.K.Singh 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期315-323,共9页
In the present paper, we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a ra- dial magnetic field. The induced magnetic field pro... In the present paper, we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a ra- dial magnetic field. The induced magnetic field produced by the motion of an electrically conducting fluid is taken into account. The transport equations concerned with the con- sidered model are first recast in the non-dimensional form and then unified analytical solutions for the velocity, induced magnetic field and temperature field are obtained for the cases of isothermal and constant heat flux on the inner cylin- der of concentric annuli. The effects of the various phys- ical parameters appearing into the model are demonstrated through graphs and tables. It is found that the magnitude of maximum value of the fluid velocity as well as induced magnetic field is greater in the case of isothermal condition compared with the constant heat flux case when the gap be- tween the cylinders is less or equal to 1.70 times the radius of inner cylinder, while reverse trend occurs when the gap between the cylinders is greater than 1.71 times the radius of inner cylinder. These fields are almost the same when the gap between the cylinders is equal to 1.71 times the radius of inner cylinder for both the cases. It is also found that as the Hartmann number increases, there is a flattening ten- dency for both the velocity and the induced magnetic field. The influence of the induced magnetic field is to increase the velocity profiles. 展开更多
关键词 Natural convection ISOTHERMAL Heat flux SKIN-FRICTION Induced magnetic field Magnetohydrody- namics
下载PDF
Natural convection of nanofluid over vertical plate embedded in porous medium: prescribed surface heat flux 被引量:2
15
作者 A. NOGHREHABADI A. BEHSERESHT M. GHALAMBAZ 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第6期669-686,共18页
The aim of the present paper is to analyze the natural convection heat and mass transfer of nanofluids over a vertical plate embedded in a saturated Darcy porous medium subjected to surface heat and nanoparticle fluxe... The aim of the present paper is to analyze the natural convection heat and mass transfer of nanofluids over a vertical plate embedded in a saturated Darcy porous medium subjected to surface heat and nanoparticle fluxes. To carry out the numerical solution, two steps are performed. The governing partial differential equations are firstly simplified into a set of highly coupled nonlinear ordinary differential equations by appropriate similarity variables, and then numerically solved by the finite difference method. The obtained similarity solution depends on four non-dimensional parameters, i.e., the Brownian motion parameter (Nb), the buoyancy ratio (Nr), the thermophoresis parameter (Nt), and the Lewis number (Le). The variations of the reduced Nusselt number and the reduced Sherwood number with Nb and Nt for various values of Le and Nr are discussed in detail. Simulation results depict that the increase in Nb, Nt, or Nr decreases the reduced Nusselt number. An increase in the Lewis number increases both of the reduced Nusselt number and the Sherwood number. The results also reveal that the nanoparticle concentration boundary layer thickness is much thinner than those of the thermal and hydrodynamic boundary layers. 展开更多
关键词 natural convection porous medium NANOFLUID surface heat flux surfacenanoparticle flux
下载PDF
Natural convection of an alumina-water nanofluid inside an inclined wavy-walled cavity with a non-uniform heating using Tiwari and Das' nanofluid model 被引量:2
16
作者 M.A.SHEREMET R.TRIMBITAS +1 位作者 T.GROSAN2 I.POP 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第10期1425-1436,共12页
The present study is devoted to numerical analysis of natural convective heat transfer and fluid flow of alumina-water nanofluid in an inclined wavy-walled cavity under the effect of non-uniform heating. A single-phas... The present study is devoted to numerical analysis of natural convective heat transfer and fluid flow of alumina-water nanofluid in an inclined wavy-walled cavity under the effect of non-uniform heating. A single-phase nanofluid model with experimental correlations for the nanofluid viscosity and thermal conductivity has been included in the mathematical model. The considered governing equations formulated in dimensionless stream function, vorticity, and temperature have been solved by the finite difference method. The cavity inclination angle and irregular walls(wavy and undulation numbers)are very good control parameters for the heat transfer and fluid flow. Nowadays, optimal parameters are necessary for the heat transfer enhancement in different practical applications. The effects of the involved parameters on the streamlines and isotherms as well as on the average Nusselt number and nanofluid flow rate have been analyzed. It has been found that the heat transfer rate and fluid flow rate are non-monotonic functions of the cavity inclination angle and undulation number. 展开更多
关键词 wavy cavity natural convection Al2O3-water nanofluid non-uniform heating numerical result
下载PDF
Experimental investigation of chimney-enhanced natural convection in hexagonal honeycombs 被引量:2
17
作者 Xiaohu Yang Jiaxi Bai +1 位作者 Tianjian Lu Tongbeum Kim 《Theoretical & Applied Mechanics Letters》 CAS 2014年第3期49-54,共6页
The natural convective heat transfer performance of an aluminum hexagonal honeycomb acting as a novel heat sink for LED cooling is experi- mentally investigated. The concept of adding an adiabatic square chimney ex- t... The natural convective heat transfer performance of an aluminum hexagonal honeycomb acting as a novel heat sink for LED cooling is experi- mentally investigated. The concept of adding an adiabatic square chimney ex- tension for heat transfer enhancement is proposed, and the effects of chimney shape, height, and diameter are quantified. The average Nuav of a heated hon- eycomb with straight chimney is significantly higher than that without chimney, and the enhancement increases with increasing chimney height. At a given chim- ney height, honeycombs with divergent chimneys perform better than those with convergent ones. For a fixed divergent angle, the Nuav number increases mono- tonically with increasing chimney height. In contrast, with the convergent angle fixed, there exists an optimal chimney height to achieve maximum heat transfer. 展开更多
关键词 natural convection HONEYCOMB adiabatic chimney experiment
下载PDF
NUMERICAL STUDY OF NATURAL CONVECTION FLOW IN A VERTICAL SLOT 被引量:1
18
作者 陆夕云 庄礼贤 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第3期215-224,共10页
The stability of convective motion, generated by a lateral temperature difference across a vertical slot, is studied numerically over a range ofGr=5000 to 1.5 × 105,Pr=0.01 to 10, andA=8,16 and 20. Various cellul... The stability of convective motion, generated by a lateral temperature difference across a vertical slot, is studied numerically over a range ofGr=5000 to 1.5 × 105,Pr=0.01 to 10, andA=8,16 and 20. Various cellular flow structures and temperature patterns are illustrated. Several branches of solutions characterized by different numbers of the cells in the flow patterns as well as by both steady and unsteady multicellular patterns are found for low-Prandtl-number fluid in the vertical slot. Meanwhile, the behaviors of the temperature variation and heat transfer are also discussed. 展开更多
关键词 natural convection INSTABILITY transition heat transfer
下载PDF
Numerical simulation of MHD natural convection flow in a wavy cavity filled by a hybrid Cu-Al2O3-water nanofluid with discrete heating 被引量:1
19
作者 C.REVNIC T.GROSAN +1 位作者 M.SHEREMET I.POP 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第9期1345-1358,共14页
We consider the combined effect of the magnetic field and heat transfer inside a square cavity containing a hybrid nanofluid(Cu-Al2O3-water).The upper and bottom walls of the cavity have a wavy shape.The temperature o... We consider the combined effect of the magnetic field and heat transfer inside a square cavity containing a hybrid nanofluid(Cu-Al2O3-water).The upper and bottom walls of the cavity have a wavy shape.The temperature of the vertical walls is lower,the third part in the middle of the bottom wall is kept at a constant higher temperature,and the remaining parts of the bottom wall and the upper wall are thermally insulated.The magnetic field is applied under the angleγ,an opposite clockwise direction.For the numerical simulation,the finite element technique is employed.The ranges of the characteristics are as follows:the Rayleigh number(10^3≤Ra≤10^5),the Hartmann number(0≤Ha≤100),the nanoparticle hybrid concentration(ϕAl2O3,ϕCu=0,0.025,0.05),the magnetic field orientation(0≤γ≤2π),and the Prandtl number Pr,the amplitude of wavy cavity A,and the number of waviness n are fixed at Pr=7,A=0.1,and n=3,respectively.The comparison with a reported finding in the open literature is done,and the data are observed to be in very good agreement.The effects of the governing parameters on the energy transport and fluid flow parameters are studied.The results prove that the increment of the magnetic influence determines the decrease of the energy transference because the conduction motion dominates the fluid movement.When the Rayleigh number is raised,the Nusselt number is increased,too.For moderate Rayleigh numbers,the maximum ratio of the heat transfer takes place for the hybrid nanofluid and then the Cu-nanofluid,followed by the Al2O3-nanofluid.The nature of motion and energy transport parameters has been scrutinized. 展开更多
关键词 MAGNETOHYDRODYNAMICS natural convection hybrid nanofluid heat transfer bottom heater wavy top and bottom enclosure
下载PDF
Lattice Boltzmann simulation of MHD natural convection in a cavity with porous media and sinusoidal temperature distribution 被引量:1
20
作者 K.JAVAHERDEH A.NAJJARNEZAMI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第8期1187-1200,共14页
The lattice Boltzmann method(LBM) is used to simulate the effect of magnetic field on the natural convection in a porous cavity. The sidewalls of the cavity are heated sinusoidally with a phase derivation, whereas the... The lattice Boltzmann method(LBM) is used to simulate the effect of magnetic field on the natural convection in a porous cavity. The sidewalls of the cavity are heated sinusoidally with a phase derivation, whereas the top and bottom walls are thermally insulated. Numerical simulation is performed, and the effects of the pertinent parameters, e.g., the Hartmann number, the porosity, the Darcy number, and the phase deviation, on the fluid flow and heat transfer are investigated. The results show that the heat transfer is affected by the temperature distribution on the sidewalls clearly. When the Hartmann number is 0, the maximum average Nusselt number is obtained at the phase deviation 90?. Moreover, the heat transfer enhances when the Darcy number and porosity increase, while decreases when the Hartman number increases. 展开更多
关键词 porous CAVITY natural convection lattice Boltzmann method(LBM)
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部