In today’s real world, an important research part in image processing isscene text detection and recognition. Scene text can be in different languages,fonts, sizes, colours, orientations and structures. Moreover, the...In today’s real world, an important research part in image processing isscene text detection and recognition. Scene text can be in different languages,fonts, sizes, colours, orientations and structures. Moreover, the aspect ratios andlayouts of a scene text may differ significantly. All these variations appear assignificant challenges for the detection and recognition algorithms that are consideredfor the text in natural scenes. In this paper, a new intelligent text detection andrecognition method for detectingthe text from natural scenes and forrecognizingthe text by applying the newly proposed Conditional Random Field-based fuzzyrules incorporated Convolutional Neural Network (CR-CNN) has been proposed.Moreover, we have recommended a new text detection method for detecting theexact text from the input natural scene images. For enhancing the presentation ofthe edge detection process, image pre-processing activities such as edge detectionand color modeling have beenapplied in this work. In addition, we have generatednew fuzzy rules for making effective decisions on the processes of text detectionand recognition. The experiments have been directedusing the standard benchmark datasets such as the ICDAR 2003, the ICDAR 2011, the ICDAR2005 and the SVT and have achieved better detection accuracy intext detectionand recognition. By using these three datasets, five different experiments havebeen conducted for evaluating the proposed model. And also, we have comparedthe proposed system with the other classifiers such as the SVM, the MLP and theCNN. In these comparisons, the proposed model has achieved better classificationaccuracywhen compared with the other existing works.展开更多
Detecting and recognizing text from natural scene images presents a challenge because the image quality depends on the conditions in which the image is captured,such as viewing angles,blurring,sensor noise,etc.However...Detecting and recognizing text from natural scene images presents a challenge because the image quality depends on the conditions in which the image is captured,such as viewing angles,blurring,sensor noise,etc.However,in this paper,a prototype for text detection and recognition from natural scene images is proposed.This prototype is based on the Raspberry Pi 4 and the Universal Serial Bus(USB)camera and embedded our text detection and recognition model,which was developed using the Python language.Our model is based on the deep learning text detector model through the Efficient and Accurate Scene Text Detec-tor(EAST)model for text localization and detection and the Tesseract-OCR,which is used as an Optical Character Recognition(OCR)engine for text recog-nition.Our prototype is controlled by the Virtual Network Computing(VNC)tool through a computer via a wireless connection.The experiment results show that the recognition rate for the captured image through the camera by our prototype can reach 99.75%with low computational complexity.Furthermore,our proto-type is more performant than the Tesseract software in terms of the recognition rate.Besides,it provides the same performance in terms of the recognition rate with a huge decrease in the execution time by an average of 89%compared to the EasyOCR software on the Raspberry Pi 4 board.展开更多
文摘In today’s real world, an important research part in image processing isscene text detection and recognition. Scene text can be in different languages,fonts, sizes, colours, orientations and structures. Moreover, the aspect ratios andlayouts of a scene text may differ significantly. All these variations appear assignificant challenges for the detection and recognition algorithms that are consideredfor the text in natural scenes. In this paper, a new intelligent text detection andrecognition method for detectingthe text from natural scenes and forrecognizingthe text by applying the newly proposed Conditional Random Field-based fuzzyrules incorporated Convolutional Neural Network (CR-CNN) has been proposed.Moreover, we have recommended a new text detection method for detecting theexact text from the input natural scene images. For enhancing the presentation ofthe edge detection process, image pre-processing activities such as edge detectionand color modeling have beenapplied in this work. In addition, we have generatednew fuzzy rules for making effective decisions on the processes of text detectionand recognition. The experiments have been directedusing the standard benchmark datasets such as the ICDAR 2003, the ICDAR 2011, the ICDAR2005 and the SVT and have achieved better detection accuracy intext detectionand recognition. By using these three datasets, five different experiments havebeen conducted for evaluating the proposed model. And also, we have comparedthe proposed system with the other classifiers such as the SVM, the MLP and theCNN. In these comparisons, the proposed model has achieved better classificationaccuracywhen compared with the other existing works.
基金This work was funded by the Deanship of Scientific Research at Jouf University(Kingdom of Saudi Arabia)under Grant No.DSR-2021-02-0392.
文摘Detecting and recognizing text from natural scene images presents a challenge because the image quality depends on the conditions in which the image is captured,such as viewing angles,blurring,sensor noise,etc.However,in this paper,a prototype for text detection and recognition from natural scene images is proposed.This prototype is based on the Raspberry Pi 4 and the Universal Serial Bus(USB)camera and embedded our text detection and recognition model,which was developed using the Python language.Our model is based on the deep learning text detector model through the Efficient and Accurate Scene Text Detec-tor(EAST)model for text localization and detection and the Tesseract-OCR,which is used as an Optical Character Recognition(OCR)engine for text recog-nition.Our prototype is controlled by the Virtual Network Computing(VNC)tool through a computer via a wireless connection.The experiment results show that the recognition rate for the captured image through the camera by our prototype can reach 99.75%with low computational complexity.Furthermore,our proto-type is more performant than the Tesseract software in terms of the recognition rate.Besides,it provides the same performance in terms of the recognition rate with a huge decrease in the execution time by an average of 89%compared to the EasyOCR software on the Raspberry Pi 4 board.