Naval Vessels Combat System is a kind of complex system.The modeling of combat system has become hot issues in the past years.This paper proposed a new method to establish models of combat system based on the theory o...Naval Vessels Combat System is a kind of complex system.The modeling of combat system has become hot issues in the past years.This paper proposed a new method to establish models of combat system based on the theory of Complex Network.The method of modeling considered the operational entities as nodes.It considered flow of information,substance and energy as edges in a network.The research also carries on a simulation to prove the applicability.Ultimately,the paper concluded that this method is applicable and accurate.展开更多
Since the 18th National Congress of Chinese Communist Party,the great call for building a maritime power and a power⁃ful military force has set higher standards for Navy’s development and the application of strategie...Since the 18th National Congress of Chinese Communist Party,the great call for building a maritime power and a power⁃ful military force has set higher standards for Navy’s development and the application of strategies.As a maritime military force,the navy bears considerable responsibilities of safeguarding territorial sovereignty,maritime rights and interests with security and development as core mission,and defending the role and image of China as a major county in the world.This paper analyzes and studies naval officers’global competence development from three aspects,and discusses the significance and recommendations of strengthening the development of naval cadets’global competence in cooperation and exchange guided by“Belt and Road”Initia⁃tive(BRI).展开更多
There has been no large-scale naval combat in the last 30 years. With the rapid development of battleships, weapons manufacturing and electronic technology, naval combat will present some new characteristics. Addition...There has been no large-scale naval combat in the last 30 years. With the rapid development of battleships, weapons manufacturing and electronic technology, naval combat will present some new characteristics. Additionally, naval combat is facing unprecedented challenges. In this paper, we discuss the topic of medical rescue at sea: what challenges we face and what we could do. The contents discussed in this paper contain battlefield self-aid buddy care, clinical skills, organized health services, medical training and future medical research programs. We also discuss the characteristics of modern naval combat, medical rescue challenges, medical treatment highlights and future developments of medical rescue at sea.展开更多
Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative....Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative.Thus,the RCS of a naval ship has become a very important design factor for achieving surprise,initiative,and survivability.Consequently,accurate RCS determination and RCS reduction are of extreme importance for a naval ship.The purpose of this paper is to provide an understanding of the theoretical background and engineering approach to deal with RCS prediction and reduction for naval ships.The importance of RCS,radar fundamentals,RCS basics,RCS prediction methods,and RCS reduction methods for naval ships is also discussed.展开更多
Shell-feeding velocity is an important factor affecting naval gun shooting capacity. An agile shell-feeding system was designed to ensure quick implementation of the shell-feeding task. Based on composition of the agi...Shell-feeding velocity is an important factor affecting naval gun shooting capacity. An agile shell-feeding system was designed to ensure quick implementation of the shell-feeding task. Based on composition of the agile shell-feeding system, hoist technology was studied. Working principles were discussed and the hydraulic pressure system of the hoist was constructed. The hydraulic pressure cylinder and the accumulator were analyzed and calculated. Finally, PRO/E and ADAMS were used to simulate the hoist and its hydraulic system. It was found that this type of virtual prototype provides a good method to actualize a physical prototype.展开更多
Sailors and pilots need three things to find their way: they musthave the correct time; they must know the exact position of the starsoverhead; and they must have a book that tells what the future positionof the stars...Sailors and pilots need three things to find their way: they musthave the correct time; they must know the exact position of the starsoverhead; and they must have a book that tells what the future positionof the stars will be. The information makes possible the science ofnavigation. And it is the job of the United States Naval Observatory tocollect and publish this information. The Headquarters of the展开更多
Tropospheric Scattering(Troposcatter) and Tropospheric Ducting are two different mechanisms due to in-homogenoueties in the lower part of the Earths atmosphere.Their common influence in propagation of microwaves is st...Tropospheric Scattering(Troposcatter) and Tropospheric Ducting are two different mechanisms due to in-homogenoueties in the lower part of the Earths atmosphere.Their common influence in propagation of microwaves is studied here in order to achieve a feasible naval communication system.Although not new,Troposcatter together with Tropospheric Ducting communications are regaining popularity in current military and civil applications such as isolated islands and oil extraction facilities in the open sea.The innovation proposed here is the application of such systems in naval communications where at least one of the stations is mobile.Several propagation together with fading models are simulated using appropriate programs and scientific simulation packets in order to predict maximum range of such communication systems in each dominant mode of operation.Then appropriate antenna design proposals are given to overcome the high propagation loss and minimize possible interferences.展开更多
When subjected to underwater explosion,the anti-shock performance of naval equipment is a key factor affecting the fighting capacity and safety of a war ship. For large-scale naval equipment,it is costly to do the sho...When subjected to underwater explosion,the anti-shock performance of naval equipment is a key factor affecting the fighting capacity and safety of a war ship. For large-scale naval equipment,it is costly to do the shock test for its huge mass and large size. Consequently,the numerical research was carried our to study the shock resistance of the equipment. Taking turbo-charger set for example,its anti-shock performance was studied using software ABAQUS based on the time-domain shock analysis method presented in BV043 /85. According to the analysis results,shock response of typical regions is obtained,some regularity curves are concluded by analyzing the Mises stress of the typical regions,and the weak regions are found out. The study can provide some references on design of turbo-charger set.展开更多
The test shell without projectile belt is widely used in the teaching,inspection and maintenance of modern automatic naval guns.In order to ensure the normal work of each mechanism,it is very important to design the b...The test shell without projectile belt is widely used in the teaching,inspection and maintenance of modern automatic naval guns.In order to ensure the normal work of each mechanism,it is very important to design the buffer and limit of the test shell during the process of entering the bore.Taking a certain type of medium caliber naval gun as the research object,the design of colloidal fluid damper and cartridge lock was proposed to ensure the reliability of entering the bore and closing the breechblock.By combining the simulation methods of computational fluid dynamics(CFD)and multibody system dynamic(MBD),it was analyzed whether the structural design can meet the engineering requirements.The research results show that the colloidal fluid damper can dissipate a large amount of kinetic energy of the shell,and the cartridge lock can limit the rebound movement.The combination of the two ensures the smooth process of closing the breechblock.The research provides a design method for the process of the test shell entering the bore,and provides theoretical support for the feasibility of the method.展开更多
The study of emergency evacuation in public spaces,buildings and large ships may present parallel characteristic in terms of complexity of the layout but there are also significant differences that can hinder passenge...The study of emergency evacuation in public spaces,buildings and large ships may present parallel characteristic in terms of complexity of the layout but there are also significant differences that can hinder passengers to reach muster stations or the lifeboats.There are many hazards on a ship that can cause an emergency evacuation,the most severe result in loss of lives.Providing safe and effective evacuation of passengers from ships in an emergency situation becomes critical.Recently,computer simulation has become an indispensable technology in various fields,among them,the evacuation models that recently evolved incorporating human behavioral factors.In this work,an analysis of evacuation in a Landing Helicopter Dock(LHD)ship was conducted.Escape routes specified by the ship’s procedures were introduced in the model and the six emergency scenarios of the Naval Ship Code were simulated.The crew and embarked troops were introduced with their different evacuation behavior,in addition,walking speeds were extracted from data set collected in experiments conducted at other warships.From the results of the simulations,the longest time was chosen and confidence intervals constructed to determine the total evacuation time.Finally,results show that evacuation time meets regulatory requirements and the usefulness and low cost of the evacuation simulation for testing and refining possible ships’layouts and emergency scenarios.展开更多
Combined with naval vessel practical antisubmarine equipment of towed linear array sonar,a mathematical model of naval vessel localization for submarine based on bearing measurement was built,and localization algorith...Combined with naval vessel practical antisubmarine equipment of towed linear array sonar,a mathematical model of naval vessel localization for submarine based on bearing measurement was built,and localization algorithm was given to solve submarine movement parameters.Localizaiton errors were analyzed.Based on localization model and algorithm,simulations were done to study the effect of factors such as initial distance between submarine and the naval vessel,submarine initial bearing angle measured by the naval vessel and submarine course on localization performance,and then simulation results were given and analyzed.The results have practical value to instruct real antisubmarine.Simulation results show that different target movement situations have great influence on sonar detection and localization performance,so the reasonable choice of sonar position and detection bearing according to the target movement situation can improve sonar detection and localization performance to some degree.展开更多
The paper identifies twelve elements of ship recycling recycling system. The source and items of knowledgebase for ship and highlights their respective roles and duties in a proposed ship recycling have been brought o...The paper identifies twelve elements of ship recycling recycling system. The source and items of knowledgebase for ship and highlights their respective roles and duties in a proposed ship recycling have been brought out. A new philosophy focusing clean and safe ship recycling namely design for ship recycling has been introduced based on principles such as ecofriendliness, engineering efficiency, energy conservation and ergonomics. The role of naval architects in ship recycling industry has been described based on the above factors. The paper brings out the role of naval architects in ship recycling the way it has been practiced worldwide and proposed by regulatory bodies. The authors have brought out the new concept of design for ship recycling and various aspects of it. The role of naval architects in the practice of this new design philosophy which is ready to be embraced by the maritime industry has been reiterated.展开更多
The medium -large caliber naval gun is still playing an important role in modern war. The development of highly automatic Shell Raising and Feeding System (SRFS) in the world has been briefly outlined. Several typical...The medium -large caliber naval gun is still playing an important role in modern war. The development of highly automatic Shell Raising and Feeding System (SRFS) in the world has been briefly outlined. Several typical SRFS of medium-large caliber naval guns have been analyzed. A re-design of the system is introduced, in which systematic design method has been used to demonstrate its feasibility. The design goal of the system is to realize rapid shell feeding, with application to many types of shells, quick change of shell types , accurate and reliable feeding operation, simple mechanical structure and easy realization of shell withdrawing.展开更多
For the complex and large targets like naval vessels,the computation for their RCS usu- ally uses high-frequency approach.Presenting the geometry modeling and the computation principle on naval vessel's RCS,this p...For the complex and large targets like naval vessels,the computation for their RCS usu- ally uses high-frequency approach.Presenting the geometry modeling and the computation principle on naval vessel's RCS,this paper puts the emphasis on the key techniques of computing the naval vessel's RCS based on high-frequency approach with the analysis on mast's effect to the total RCS as the example.展开更多
An overview is provided of CFDShip-Iowa modeling, numerical methods and high performance computing (HPC), including both current V4.5 and V5.5 and next generation V6. Examples for naval architecture highlight capabi...An overview is provided of CFDShip-Iowa modeling, numerical methods and high performance computing (HPC), including both current V4.5 and V5.5 and next generation V6. Examples for naval architecture highlight capability and needs. High fidelity V6 simulations for ocean engineering and fundamental physics describe increased resolution for analysis of physics of fluids. Uncertainty quantification research is overviewed as the first step towards development stochastic optimization.展开更多
The UV photooxidation with Fe(Ⅲ) and H2O2 was employed to treat a naval derusting wastewater, which contains the high COD (chemical oxygen demand) and various metal concentrations exceptionally with high concentr...The UV photooxidation with Fe(Ⅲ) and H2O2 was employed to treat a naval derusting wastewater, which contains the high COD (chemical oxygen demand) and various metal concentrations exceptionally with high concentrations of citric acid and iron. Because of its iron containment, the Fenton-like reaction automatically took place with the added amount of H2O2. The decomposition rate was found in a sequence of: UV/HEOE/Fe(Ⅲ) 〉 UV/H2O2 〉 Fe(Ⅱ)/H2O2. Two H2O2 injection methods, single and multiple points, were evaluated. The multiple-point H2O2 injection was more efficient to decompose the citric acid. The decomposition of the synthetic citric acid and the real derusting citric acid wastewater was also compared. The 93% COD reduction of the derusting wastewater was achieved using the UV/HEOE/Fe(Ⅲ) treatment.展开更多
The way to characterize the behaviour of a naval steel grade E36 subjected to the corrosive fatigue process is investigated. The tests were carried out by bending fatigue of plate specimens with thickness of 10 mm in ...The way to characterize the behaviour of a naval steel grade E36 subjected to the corrosive fatigue process is investigated. The tests were carried out by bending fatigue of plate specimens with thickness of 10 mm in the corrosive environment consisting of an aqueous solution of 3.5% of NaCl which is similar to seawater. Experimental results show that the principal mechanism of degradation of the superficial layer is based on the pit evolution,evidenced by electrochemical,micro and macro structural timely changes such as evolution of electrode potential,evolution of current density,polarization resistance,anodic and cathodic parameters,and dislocation density evolution.展开更多
A series of thermal compression tests on a CrMn-Si-Ni alloyed naval steel were carried out at different strain rates(0.0005-0.0100 s^(-1)) at different temperatures(1023-1173 K).Based on the friction-corrected data ob...A series of thermal compression tests on a CrMn-Si-Ni alloyed naval steel were carried out at different strain rates(0.0005-0.0100 s^(-1)) at different temperatures(1023-1173 K).Based on the friction-corrected data obtained from the compression tests,strain-compensated Arrhenius-type constitutive(SCAC) and backpropagation artificial neural network(BP-ANN) models with the optimized structure of the Cr-Mn-Si-Ni alloyed naval steel were established.The optimized BP-ANN model,where the operation time and overfitting of BP-ANN were shortened and avoided,respectively,exhibited improved predictive performance.The two models were assessed further in terms of the correlation coefficient(R),average absolute relative error,and root mean square error.The results validated that the optimized BP-ANN model predicted the flow behavior of the Cr-Mn-Si-Ni alloyed naval steel better than the SC AC model.The effect of the forming temperature and strain rate on the microstructural evolution behavior of the naval steel during thermoplastic deformation was investigated through the electron backscatter diffraction analysis of the compressed samples.It was observed that the dynamic recrystallization of the naval steel was promoted by an increase in the forming temperature and a decrease in the strain rate during thermoplastic deformation.展开更多
The discipline of Naval Architecture and Ocean Engineering at Shanghai Jiao Tong University traces its origin back to the Department of Shipbuilding Engineering in 1943.As a cradle of higher education in Naval Archite...The discipline of Naval Architecture and Ocean Engineering at Shanghai Jiao Tong University traces its origin back to the Department of Shipbuilding Engineering in 1943.As a cradle of higher education in Naval Architecture and Ocean Engineering in China,it has cultivated a large number of scientific and technological elites and leading talents.It provides comprehensive support in talent cultivation,scientific research,and technical services to the industry.展开更多
I. Overview Naval Architecture and Ocean Engineering covers a wide range of knowledge, and lays equal stress on both theory and practices. New concepts, new technologies and new methods on naval architecture and ocea...I. Overview Naval Architecture and Ocean Engineering covers a wide range of knowledge, and lays equal stress on both theory and practices. New concepts, new technologies and new methods on naval architecture and ocean engineering are continuously emerging. Since 2009, the international summer school on Naval Architecture, Ocean Engineering and Mechanics have provided a valuable learning and communication opportunity for the students to expand their fields of vision, and have comprehensive understanding of the naval architecture and ocean engineering, have already become a well-known brand in the field of Naval Architecture,展开更多
基金supported by Science Foundation of Dalian Naval Academy
文摘Naval Vessels Combat System is a kind of complex system.The modeling of combat system has become hot issues in the past years.This paper proposed a new method to establish models of combat system based on the theory of Complex Network.The method of modeling considered the operational entities as nodes.It considered flow of information,substance and energy as edges in a network.The research also carries on a simulation to prove the applicability.Ultimately,the paper concluded that this method is applicable and accurate.
文摘Since the 18th National Congress of Chinese Communist Party,the great call for building a maritime power and a power⁃ful military force has set higher standards for Navy’s development and the application of strategies.As a maritime military force,the navy bears considerable responsibilities of safeguarding territorial sovereignty,maritime rights and interests with security and development as core mission,and defending the role and image of China as a major county in the world.This paper analyzes and studies naval officers’global competence development from three aspects,and discusses the significance and recommendations of strengthening the development of naval cadets’global competence in cooperation and exchange guided by“Belt and Road”Initia⁃tive(BRI).
文摘There has been no large-scale naval combat in the last 30 years. With the rapid development of battleships, weapons manufacturing and electronic technology, naval combat will present some new characteristics. Additionally, naval combat is facing unprecedented challenges. In this paper, we discuss the topic of medical rescue at sea: what challenges we face and what we could do. The contents discussed in this paper contain battlefield self-aid buddy care, clinical skills, organized health services, medical training and future medical research programs. We also discuss the characteristics of modern naval combat, medical rescue challenges, medical treatment highlights and future developments of medical rescue at sea.
基金Supported by Program for New Century Excellent Talents in University under Grant No.NCET-07-0230the "111" Project under Grant No.B07019 at Harbin Engineering University
文摘Radar cross section(RCS) is the measurement of the reflective strength of a target.Reducing the RCS of a naval ship enables its late detection,which is useful for capitalizing on elements of surprise and initiative.Thus,the RCS of a naval ship has become a very important design factor for achieving surprise,initiative,and survivability.Consequently,accurate RCS determination and RCS reduction are of extreme importance for a naval ship.The purpose of this paper is to provide an understanding of the theoretical background and engineering approach to deal with RCS prediction and reduction for naval ships.The importance of RCS,radar fundamentals,RCS basics,RCS prediction methods,and RCS reduction methods for naval ships is also discussed.
文摘Shell-feeding velocity is an important factor affecting naval gun shooting capacity. An agile shell-feeding system was designed to ensure quick implementation of the shell-feeding task. Based on composition of the agile shell-feeding system, hoist technology was studied. Working principles were discussed and the hydraulic pressure system of the hoist was constructed. The hydraulic pressure cylinder and the accumulator were analyzed and calculated. Finally, PRO/E and ADAMS were used to simulate the hoist and its hydraulic system. It was found that this type of virtual prototype provides a good method to actualize a physical prototype.
文摘Sailors and pilots need three things to find their way: they musthave the correct time; they must know the exact position of the starsoverhead; and they must have a book that tells what the future positionof the stars will be. The information makes possible the science ofnavigation. And it is the job of the United States Naval Observatory tocollect and publish this information. The Headquarters of the
文摘Tropospheric Scattering(Troposcatter) and Tropospheric Ducting are two different mechanisms due to in-homogenoueties in the lower part of the Earths atmosphere.Their common influence in propagation of microwaves is studied here in order to achieve a feasible naval communication system.Although not new,Troposcatter together with Tropospheric Ducting communications are regaining popularity in current military and civil applications such as isolated islands and oil extraction facilities in the open sea.The innovation proposed here is the application of such systems in naval communications where at least one of the stations is mobile.Several propagation together with fading models are simulated using appropriate programs and scientific simulation packets in order to predict maximum range of such communication systems in each dominant mode of operation.Then appropriate antenna design proposals are given to overcome the high propagation loss and minimize possible interferences.
基金Sponsored by the Science and Technology Program of Heilongjiang Provicial Department of Education( Grant No 11544022)
文摘When subjected to underwater explosion,the anti-shock performance of naval equipment is a key factor affecting the fighting capacity and safety of a war ship. For large-scale naval equipment,it is costly to do the shock test for its huge mass and large size. Consequently,the numerical research was carried our to study the shock resistance of the equipment. Taking turbo-charger set for example,its anti-shock performance was studied using software ABAQUS based on the time-domain shock analysis method presented in BV043 /85. According to the analysis results,shock response of typical regions is obtained,some regularity curves are concluded by analyzing the Mises stress of the typical regions,and the weak regions are found out. The study can provide some references on design of turbo-charger set.
基金This work wasp artially sponsored by Naval University of Engineering.
文摘The test shell without projectile belt is widely used in the teaching,inspection and maintenance of modern automatic naval guns.In order to ensure the normal work of each mechanism,it is very important to design the buffer and limit of the test shell during the process of entering the bore.Taking a certain type of medium caliber naval gun as the research object,the design of colloidal fluid damper and cartridge lock was proposed to ensure the reliability of entering the bore and closing the breechblock.By combining the simulation methods of computational fluid dynamics(CFD)and multibody system dynamic(MBD),it was analyzed whether the structural design can meet the engineering requirements.The research results show that the colloidal fluid damper can dissipate a large amount of kinetic energy of the shell,and the cartridge lock can limit the rebound movement.The combination of the two ensures the smooth process of closing the breechblock.The research provides a design method for the process of the test shell entering the bore,and provides theoretical support for the feasibility of the method.
基金the Spanish Ministry of Economy and Competitiveness through the research project TIN2016-76770-R.
文摘The study of emergency evacuation in public spaces,buildings and large ships may present parallel characteristic in terms of complexity of the layout but there are also significant differences that can hinder passengers to reach muster stations or the lifeboats.There are many hazards on a ship that can cause an emergency evacuation,the most severe result in loss of lives.Providing safe and effective evacuation of passengers from ships in an emergency situation becomes critical.Recently,computer simulation has become an indispensable technology in various fields,among them,the evacuation models that recently evolved incorporating human behavioral factors.In this work,an analysis of evacuation in a Landing Helicopter Dock(LHD)ship was conducted.Escape routes specified by the ship’s procedures were introduced in the model and the six emergency scenarios of the Naval Ship Code were simulated.The crew and embarked troops were introduced with their different evacuation behavior,in addition,walking speeds were extracted from data set collected in experiments conducted at other warships.From the results of the simulations,the longest time was chosen and confidence intervals constructed to determine the total evacuation time.Finally,results show that evacuation time meets regulatory requirements and the usefulness and low cost of the evacuation simulation for testing and refining possible ships’layouts and emergency scenarios.
文摘Combined with naval vessel practical antisubmarine equipment of towed linear array sonar,a mathematical model of naval vessel localization for submarine based on bearing measurement was built,and localization algorithm was given to solve submarine movement parameters.Localizaiton errors were analyzed.Based on localization model and algorithm,simulations were done to study the effect of factors such as initial distance between submarine and the naval vessel,submarine initial bearing angle measured by the naval vessel and submarine course on localization performance,and then simulation results were given and analyzed.The results have practical value to instruct real antisubmarine.Simulation results show that different target movement situations have great influence on sonar detection and localization performance,so the reasonable choice of sonar position and detection bearing according to the target movement situation can improve sonar detection and localization performance to some degree.
文摘The paper identifies twelve elements of ship recycling recycling system. The source and items of knowledgebase for ship and highlights their respective roles and duties in a proposed ship recycling have been brought out. A new philosophy focusing clean and safe ship recycling namely design for ship recycling has been introduced based on principles such as ecofriendliness, engineering efficiency, energy conservation and ergonomics. The role of naval architects in ship recycling industry has been described based on the above factors. The paper brings out the role of naval architects in ship recycling the way it has been practiced worldwide and proposed by regulatory bodies. The authors have brought out the new concept of design for ship recycling and various aspects of it. The role of naval architects in the practice of this new design philosophy which is ready to be embraced by the maritime industry has been reiterated.
文摘The medium -large caliber naval gun is still playing an important role in modern war. The development of highly automatic Shell Raising and Feeding System (SRFS) in the world has been briefly outlined. Several typical SRFS of medium-large caliber naval guns have been analyzed. A re-design of the system is introduced, in which systematic design method has been used to demonstrate its feasibility. The design goal of the system is to realize rapid shell feeding, with application to many types of shells, quick change of shell types , accurate and reliable feeding operation, simple mechanical structure and easy realization of shell withdrawing.
文摘For the complex and large targets like naval vessels,the computation for their RCS usu- ally uses high-frequency approach.Presenting the geometry modeling and the computation principle on naval vessel's RCS,this paper puts the emphasis on the key techniques of computing the naval vessel's RCS based on high-frequency approach with the analysis on mast's effect to the total RCS as the example.
基金supported by research Grants from the Office of Naval Research (ONR), with Dr. Patrick Purtell, Dr. Ki-Han Kim, Dr. Thomas Fu, Ms. Kelly Cooper, Dr. Roshdy Barsoum, and Dr. Robert Brizzolara as the program managers
文摘An overview is provided of CFDShip-Iowa modeling, numerical methods and high performance computing (HPC), including both current V4.5 and V5.5 and next generation V6. Examples for naval architecture highlight capability and needs. High fidelity V6 simulations for ocean engineering and fundamental physics describe increased resolution for analysis of physics of fluids. Uncertainty quantification research is overviewed as the first step towards development stochastic optimization.
文摘The UV photooxidation with Fe(Ⅲ) and H2O2 was employed to treat a naval derusting wastewater, which contains the high COD (chemical oxygen demand) and various metal concentrations exceptionally with high concentrations of citric acid and iron. Because of its iron containment, the Fenton-like reaction automatically took place with the added amount of H2O2. The decomposition rate was found in a sequence of: UV/HEOE/Fe(Ⅲ) 〉 UV/H2O2 〉 Fe(Ⅱ)/H2O2. Two H2O2 injection methods, single and multiple points, were evaluated. The multiple-point H2O2 injection was more efficient to decompose the citric acid. The decomposition of the synthetic citric acid and the real derusting citric acid wastewater was also compared. The 93% COD reduction of the derusting wastewater was achieved using the UV/HEOE/Fe(Ⅲ) treatment.
文摘The way to characterize the behaviour of a naval steel grade E36 subjected to the corrosive fatigue process is investigated. The tests were carried out by bending fatigue of plate specimens with thickness of 10 mm in the corrosive environment consisting of an aqueous solution of 3.5% of NaCl which is similar to seawater. Experimental results show that the principal mechanism of degradation of the superficial layer is based on the pit evolution,evidenced by electrochemical,micro and macro structural timely changes such as evolution of electrode potential,evolution of current density,polarization resistance,anodic and cathodic parameters,and dislocation density evolution.
基金financially supported by the National Natural Science Foundation of China (No.51975071)the Venture & Innovation Support Program for Chongqing Overseas ReturneesFundamental Research Funds for the Central Universities (No.2021CDJKYJH0001)。
文摘A series of thermal compression tests on a CrMn-Si-Ni alloyed naval steel were carried out at different strain rates(0.0005-0.0100 s^(-1)) at different temperatures(1023-1173 K).Based on the friction-corrected data obtained from the compression tests,strain-compensated Arrhenius-type constitutive(SCAC) and backpropagation artificial neural network(BP-ANN) models with the optimized structure of the Cr-Mn-Si-Ni alloyed naval steel were established.The optimized BP-ANN model,where the operation time and overfitting of BP-ANN were shortened and avoided,respectively,exhibited improved predictive performance.The two models were assessed further in terms of the correlation coefficient(R),average absolute relative error,and root mean square error.The results validated that the optimized BP-ANN model predicted the flow behavior of the Cr-Mn-Si-Ni alloyed naval steel better than the SC AC model.The effect of the forming temperature and strain rate on the microstructural evolution behavior of the naval steel during thermoplastic deformation was investigated through the electron backscatter diffraction analysis of the compressed samples.It was observed that the dynamic recrystallization of the naval steel was promoted by an increase in the forming temperature and a decrease in the strain rate during thermoplastic deformation.
文摘The discipline of Naval Architecture and Ocean Engineering at Shanghai Jiao Tong University traces its origin back to the Department of Shipbuilding Engineering in 1943.As a cradle of higher education in Naval Architecture and Ocean Engineering in China,it has cultivated a large number of scientific and technological elites and leading talents.It provides comprehensive support in talent cultivation,scientific research,and technical services to the industry.
文摘I. Overview Naval Architecture and Ocean Engineering covers a wide range of knowledge, and lays equal stress on both theory and practices. New concepts, new technologies and new methods on naval architecture and ocean engineering are continuously emerging. Since 2009, the international summer school on Naval Architecture, Ocean Engineering and Mechanics have provided a valuable learning and communication opportunity for the students to expand their fields of vision, and have comprehensive understanding of the naval architecture and ocean engineering, have already become a well-known brand in the field of Naval Architecture,