针对海战场环境下态势评估中目标数量多、类型复杂多样的问题,首先引入数据聚类对态势评估的目标分群环节进行聚类分群,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的密度聚类,可聚类任意形状的...针对海战场环境下态势评估中目标数量多、类型复杂多样的问题,首先引入数据聚类对态势评估的目标分群环节进行聚类分群,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的密度聚类,可聚类任意形状的数据簇,遍历性好,能够对战场环境下目标进行全面合理的分群;然后,给出了算法计算的基本步骤,并利用算例对已知战场态势的目标群进行正确性验证;最后,将该算法与基于划分的K-means算法、基于层次的AGNES(AGglomerative NESting)算法进行了对比分析,证明了该算法的有效性和合理性。展开更多
电磁频谱管控(electromagnetic frequency spectrum management,EFSM)是联合作战中各作战单元有效联合的关键环节。针对当前战场电磁频谱管理热点问题,分析了美军新一代的海战场频率规划操作流程,对如何提升我军未来海战场电磁频谱管理...电磁频谱管控(electromagnetic frequency spectrum management,EFSM)是联合作战中各作战单元有效联合的关键环节。针对当前战场电磁频谱管理热点问题,分析了美军新一代的海战场频率规划操作流程,对如何提升我军未来海战场电磁频谱管理能力进行了探讨。展开更多
文摘针对海战场环境下态势评估中目标数量多、类型复杂多样的问题,首先引入数据聚类对态势评估的目标分群环节进行聚类分群,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的密度聚类,可聚类任意形状的数据簇,遍历性好,能够对战场环境下目标进行全面合理的分群;然后,给出了算法计算的基本步骤,并利用算例对已知战场态势的目标群进行正确性验证;最后,将该算法与基于划分的K-means算法、基于层次的AGNES(AGglomerative NESting)算法进行了对比分析,证明了该算法的有效性和合理性。