期刊文献+
共找到1,190篇文章
< 1 2 60 >
每页显示 20 50 100
Chinese expert consensus on laparoscopic hepatic segmentectomy and subsegmentectomy navigated by augmented-and mixed-reality technology combined with indocyanine green fluorescence imaging 被引量:1
1
作者 Hepatic Surgery Group,Surgery Branch of Chinese Medical Association Digital Medical Branch of Chinese Medical Association +3 位作者 Digital Intelligent Surgery Committee of Chinese Research Hospital Association Liver Cancer Committee of Chinese Medical Doctor Association Xiaoping Chen Chihua Fang 《Oncology and Translational Medicine》 2023年第6期241-247,共7页
Augmented-and mixed-reality technologies have pioneered the realization of real-time fusion and interactive projection for laparoscopic surgeries.Indocyanine green fluorescence imaging technology has enabled anatomica... Augmented-and mixed-reality technologies have pioneered the realization of real-time fusion and interactive projection for laparoscopic surgeries.Indocyanine green fluorescence imaging technology has enabled anatomical,functional,and radical hepatectomy through tumor identification and localization of target hepatic segments,driving a transformative shift in themanagement of hepatic surgical diseases,moving away from traditional,empirical diagnostic and treatment approaches toward digital,intelligent ones.The Hepatic Surgery Group of the Surgery Branch of the Chinese Medical Association,Digital Medicine Branch of the Chinese Medical Association,Digital Intelligent Surgery Committee of the Chinese Society of ResearchHospitals,and Liver Cancer Committee of the Chinese Medical Doctor Association organized the relevant experts in China to formulate this consensus.This consensus provides a comprehensive outline of the principles,advantages,processes,and key considerations associated with the application of augmented reality and mixed-reality technology combined with indocyanine green fluorescence imaging technology for hepatic segmental and subsegmental resection.The purpose is to streamline and standardize the application of these technologies. 展开更多
关键词 Augmented reality and mixed reality HEPATECTOMY Hepatic segmental resection Indocyanine green Liver neoplasms Navigation
下载PDF
Navigated liver surgery:State of the art and future perspectives 被引量:6
2
作者 Paschalis Gavriilidis Bjørn Edwin +5 位作者 Egidijus Pelanis Ernest Hidalgo Nicola de’Angelis Riccardo Memeo Luca Aldrighetti Robert P Sutcliffe 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2022年第3期226-233,共8页
Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surger... Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surgery with virtual reality of simulation 3D computer models,3D printing models and more recently holograms and augmented reality(when virtual reality knowledge is superimposed onto reality).In addition,the utilization of real-time fluorescent imaging techniques based on indocyanine green(ICG)uptake allows clinicians to precisely delineate the liver anatomy and/or tumors within the parenchyma,applying the knowledge obtained preoperatively through digital imaging.The combination of both has transformed the abstract thinking until now based on 2D imaging into a 3D preoperative conception(virtual reality),enhanced with real-time visualization of the fluorescent liver structures,effectively facilitating intraoperative navigated liver surgery(augmented reality).Data sources:A literature search was performed from inception until January 2021 in MEDLINE(Pub Med),Embase,Cochrane library and database for systematic reviews(CDSR),Google Scholar,and National Institute for Health and Clinical Excellence(NICE)databases.Results:Fifty-one pertinent articles were retrieved and included.The different types of digital imaging technologies and the real-time navigated liver surgery were estimated and compared.Conclusions:ICG fluorescent imaging techniques can contribute essentially to the real-time definition of liver segments;as a result,precise hepatic resection can be guided by the presence of fluorescence.Furthermore,3D models can help essentially to further advancing of precision in hepatic surgery by permitting estimation of liver volume and functional liver remnant,delineation of resection lines along the liver segments and evaluation of tumor margins.In liver transplantation and especially in living donor liver transplantation(LDLT),3D printed models of the donor’s liver and models of the recipient’s hilar anatomy can contribute further to improving the results.In particular,pediatric LDLT abdominal cavity models can help to manage the largest challenge of this procedure,namely large-for-size syndrome. 展开更多
关键词 navigated Hepatic surgery 3D Computer assistance Image guidance Image guided surgery Indocyanine green 3D print Visual simulation Virtual reality Augmented reality Real-time navigated liver surgery
下载PDF
Analysis of Factors Influencing True Blood Loss in Navigated Total Knee Replacements
3
作者 Laghvendu Shekhar Yogesh Salphale 《Surgical Science》 2019年第2期59-69,共11页
Title: Analysis of factors influencing true blood loss in navigated total knee replacements. Objectives: To evaluate true blood loss in total knee replacements and analyze the various factors such as gender, BMI, diag... Title: Analysis of factors influencing true blood loss in navigated total knee replacements. Objectives: To evaluate true blood loss in total knee replacements and analyze the various factors such as gender, BMI, diagnosis, size of implants, duration of surgery, tourniquet usage etc. on calculated blood loss using formula by Nadler et al. All the cases included have been done using navigation system and no comparison with conventional jig based surgeries has been attempted. Methods: Retrospectively data of primary cemented total knee replacements performed from October 2012 to August 2013 were evaluated. All surgeries were performed using navigation system. The data collected included patient sex, height, weight and preoperative haemoglobin and hematocrit. The patients’ postoperative data of haemoglobin, hematocrit and drains were collected. All patients had their CBC done on 2nd post operative day. Any data on transfusions that patients received were also collected. We also collected data regarding the size of implant used. We calculated true blood based on formula given by Nadler, Hidalgo & Bloch. We excluded patients whose data were incomplete or who received tranexamic acid. Patients who needed stems (femoral or tibial) were also excluded from this study. Results: The average true calculated blood loss was 959.44 ml. BMI did not have any effect on blood loss. But larger size implants were associated with more blood loss. Conclusion: The preoperative haemoglobin is one of the most important factors in determining transfusion following the knee replacement. Male gender and larger implants are associated with more blood loss. BMI, diagnosis of OA or RA, tourniquet usage and time have no significant effect on blood loss. Our calculated blood loss compares favourably with published literature. 展开更多
关键词 navigated TOTAL KNEE Replacements BLOOD LOSS TRANSFUSION
下载PDF
ARCHITECTURE AND ITS IMPLEMENTATION FOR ROBOTS TO NAVIGATE IN UNKNOWN INDOOR ENVIRONMENTS
4
作者 Li Wenfeng Christensen I. Henrik Oreback Anders 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期366-370,共5页
It is discussed with the design and implementation of an architecture for a mobile robot to navigate in dynamic and anknown indoor environments. The architecture is based on the framework of Open Robot Control Softwar... It is discussed with the design and implementation of an architecture for a mobile robot to navigate in dynamic and anknown indoor environments. The architecture is based on the framework of Open Robot Control Software at KTH (OROCOS@KTH), which is also discussed and evaluated to navigate indoor efficiently, a new algorithm named door-like-exit detection is proposed which employs 2D feature oft. door and extracts key points of pathway from the raw data of a laser scanner. As a hybrid architecture, it is decomposed into several basic components which can be classified as either deliberative or reactive. Each component can concurrently execute and communicate with another. It is expansible and transferable and its components are reusable. 展开更多
关键词 Indoor navigation Architecture Framework Component Mobile robots
下载PDF
Individualized brain mapping for navigated neuromodulation
5
作者 Chaohong Gao Xia Wu +4 位作者 Xinle Cheng Kristoffer Hougaard Madsen Congying Chu Zhengyi Yang Lingzhong Fan 《Chinese Medical Journal》 SCIE CAS CSCD 2024年第5期508-523,共16页
The brain is a complex organ that requires precise mapping to understand its structure and function.Brain atlases provide a powerful tool for studying brain circuits,discovering biological markers for early diagnosis,... The brain is a complex organ that requires precise mapping to understand its structure and function.Brain atlases provide a powerful tool for studying brain circuits,discovering biological markers for early diagnosis,and developing personalized treatments for neuropsychiatric disorders.Neuromodulation techniques,such as transcranial magnetic stimulation and deep brain stimulation,have revolutionized clinical therapies for neuropsychiatric disorders.However,the lack of fine-scale brain atlases limits the precision and effectiveness of these techniques.Advances in neuroimaging and machine learning techniques have led to the emergence of stereotactic-assisted neurosurgery and navigation systems.Still,the individual variability among patients and the diversity of brain diseases make it necessary to develop personalized solutions.The article provides an overview of recent advances in individualized brain mapping and navigated neuromodulation and discusses the methodological profiles,advantages,disadvantages,and future trends of these techniques.The article concludes by posing open questions about the future development of individualized brain mapping and navigated neuromodulation. 展开更多
关键词 Brain atlas INDIVIDUALIZATION navigated neuromodulation Multimodal magnetic resonance imaging Transcranial magnetic stimulation Deep brain stimulation
原文传递
Unexpected divergence in magnetoreceptor MagR from robin and pigeon linked to two sequence variations
6
作者 Shun Wang Peng Zhang +12 位作者 Fan Fei Tianyang Tong Xiujuan Zhou Yajie Zhou Jing Zhang Mengke Wei Yanqi Zhang Lei Zhang Yulong Huang Lin Zhang Xin Zhang Tiantian Cai Can Xie 《Zoological Research》 SCIE CSCD 2024年第1期69-78,共10页
Birds exhibit extraordinary mobility and remarkable navigational skills,obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement.Bird species also show tremendous diversity i... Birds exhibit extraordinary mobility and remarkable navigational skills,obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement.Bird species also show tremendous diversity in navigation strategies,with considerable differences even within the same taxa and among individuals from the same population.The highly conserved iron and iron-sulfur cluster binding magnetoreceptor(MagR)protein is suggested to enable animals,including birds,to detect the geomagnetic field and navigate accordingly.Notably,MagR is also implicated in other functions,such as electron transfer and biogenesis of iron-sulfur clusters,raising the question of whether variability exists in its biochemical and biophysical features among species,particularly birds.In the current study,we conducted a comparative analysis of MagR from two different bird species,including the migratory European robin(Erithacus rubecula)and the homing pigeon(Columba livia).Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species,with only three sequence variations.Nevertheless,two of these variations underpinned significant differences in metal binding capacity,oligomeric state,and magnetic properties.These findings offer compelling evidence for the marked differences in MagR between the two avian species,potentially explaining how a highly conserved protein can mediate such diverse functions. 展开更多
关键词 Homing and migration Animal navigation Magnetoreceptor(MagR) Diverse navigation pattern Conserved protein
下载PDF
BDSec:Security Authentication Protocol for BeiDou-II Civil Navigation Message
7
作者 Wu Zhijun Zhang Yuan +2 位作者 Yang Yiming Wang Peng Yue Meng 《China Communications》 SCIE CSCD 2024年第6期206-218,共13页
Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-II civil navigation message(BDII-CNAV)are vulnerable to spoofing attack and replay attack.To solve this problem,we present a se... Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-II civil navigation message(BDII-CNAV)are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM)series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDII-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism)to protect the integrity of the BDII-CNAV,adopts the SM2 algorithm(Public key cryptosystem)to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm)to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDII-CNAV. 展开更多
关键词 BDII civil navigation messages(BDIICNAV) BeiDou navigation satellite system(BDS) identity-based cryptography mechanism navigation message authentication protocol(BDSec)
下载PDF
Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression
8
作者 DONG Wen-bo ZHOU Li +2 位作者 DING Shi-feng WANG Ai-ming CAI Jin-yan 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期313-325,共13页
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ... Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second. 展开更多
关键词 ice channel ship navigation IDENTIFICATION image segmentation corner point regression
下载PDF
Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization
9
作者 Yan Wang You Lu +1 位作者 Yuqing Zhou Zhijian Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2673-2703,共31页
Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy cri... Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy criterion(MCC)instead of the minimummean square error criterion(MMSE).This innovative approach is applied to the loose coupling of the Inertial Navigation System(INS)and Ultra-Wideband(UWB).By introducing the maximum correntropy criterion,the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise,thus enhancing its adaptability to diverse environmental localization requirements.Particularly in the presence of non-Gaussian noise,especially heavy-tailed noise,the MCCUKF exhibits superior accuracy and robustness compared to the traditional UKF.The method initially generates an estimate of the predicted state and covariance matrix through the unscented transform(UT)and then recharacterizes the measurement information using a nonlinear regression method at the cost of theMCC.Subsequently,the state and covariance matrices of the filter are updated by employing the unscented transformation on the measurement equations.Moreover,to mitigate the influence of non-line-of-sight(NLOS)errors positioning accuracy,this paper proposes a k-medoid clustering algorithm based on bisection k-means(Bikmeans).This algorithm preprocesses the UWB distance measurements to yield a more precise position estimation.Simulation results demonstrate that MCCUKF is robust to the uncertainty of UWB and realizes stable integration of INS and UWB systems. 展开更多
关键词 Maximum correntropy criterion unscented Kalman filter inertial navigation system ULTRA-WIDEBAND bisecting kmeans clustering algorithm
下载PDF
Navigation Finsler metrics on a gradient Ricci soliton
10
作者 LI Ying MO Xiao-huan WANG Xiao-yang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期266-275,共10页
In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to b... In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton. 展开更多
关键词 gradient Ricci soliton navigation Finsler metric isotropic S-curvature Ricci curvature Gaussian shrinking soliton
下载PDF
Effect of navigation endoscopy combined with threedimensional printing technology in the treatment of orbital blowout fractures
11
作者 Jin-Hai Yu Yao-Hua Wang +3 位作者 Qi-Hua Xu Chao Xiong An-An Wang Hong-Fei Liao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期570-576,共7页
●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospectiv... ●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospective analysis was conducted on the data of patients with OBF who underwent surgical treatment at the Affiliated Eye Hospital of Nanchang University between July 2012 and November 2022.The control group consisted of patients who received traditional surgical treatment(n=43),while the new surgical group(n=52)consisted of patients who received NNE with 3DPT.The difference in therapeutic effects between the two groups was evaluated by comparing the duration of the operation,best corrected visual acuity(BCVA),enophthalmos difference,recovery rate of eye movement disorder,recovery rate of diplopia,and incidence of postoperative complications.●RESULTS:The study included 95 cases(95 eyes),with 63 men and 32 women.The patients’age ranged from 5 to 67y(35.21±15.75y).The new surgical group and the control group exhibited no statistically significant differences in the duration of the operation,BCVA and enophthalmos difference.The recovery rates of diplopia in the new surgical group were significantly higher than those in the control group at 1mo[OR=0.03,95%CI(0.01–0.15),P<0.0000]and 3mo[OR=0.11,95%CI(0.03–0.36),P<0.0000]postoperation.Additionally,the recovery rates of eye movement disorders at 1 and 3mo after surgery were OR=0.08,95%CI(0.03–0.24),P<0.0000;and OR=0.01,95%CI(0.00–0.18),P<0.0000.The incidence of postoperative complications was lower in the new surgical group compared to the control group[OR=4.86,95%CI(0.95–24.78),P<0.05].●CONCLUSION:The combination of NNE and 3DPT can shorten the recovery time of diplopia and eye movement disorder in patients with OBF. 展开更多
关键词 orbital blowout fracture three-dimensional printing ENDOSCOPY surgical navigation
下载PDF
Improving the spaceborne GNSS-R altimetric precision based on the novel multilayer feedforward neural network weighted joint prediction model
12
作者 Yiwen Zhang Wei Zheng Zongqiang Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期271-284,共14页
Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at... Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry. 展开更多
关键词 GNSS-R satellite constellations Sea surface altimetric precision Underwater navigation Multilayer feedforward neural network
下载PDF
High-Precision Doppler Frequency Estimation Based Positioning Using OTFS Modulations by Red and Blue Frequency Shift Discriminator
13
作者 Shaojing Wang Xiaomei Tang +3 位作者 Jing Lei Chunjiang Ma Chao Wen Guangfu Sun 《China Communications》 SCIE CSCD 2024年第2期17-31,共15页
Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple... Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler. 展开更多
关键词 channel estimation communication and navigation integration Orthogonal Time Frequency and Space pseudo-noise sequence red-blue frequency shift discriminator
下载PDF
Design methodology of a mini-missile considering flight performance and guidance precision
14
作者 ZHANG Licong GONG Chunlin +1 位作者 SU Hua ANDREA Da Ronch 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期195-210,共16页
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m... The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach. 展开更多
关键词 mini-missiles(MMs) guidance NAVIGATION and control(GNC)system multi-objective optimization multidisciplinary design optimization(MDO) flight performance guidance precision
下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
15
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast Search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
下载PDF
Free-walking:Pedestrian inertial navigation based on dual foot-mounted IMU
16
作者 Qu Wang Meixia Fu +6 位作者 Jianquan Wang Lei Sun Rong Huang Xianda Li Zhuqing Jiang Yan Huang Changhui Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期573-587,共15页
The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor... The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance. 展开更多
关键词 Indoor positioning Inertial navigation system(INS) Zero-velocity update(ZUPT) Internet of things(IoTs) Location-based service(LBS)
下载PDF
Single-center experience with Knee+^(TM) augmented reality navigation system in primary total knee arthroplasty
17
作者 Evangelos Sakellariou Panagiotis Alevrogiannis +6 位作者 Fani Alevrogianni Athanasios Galanis Michail Vavourakis Panagiotis Karampinas Panagiotis Gavriil John Vlamis Stavros Alevrogiannis 《World Journal of Orthopedics》 2024年第3期247-256,共10页
BACKGROUND Computer-assisted systems obtained an increased interest in orthopaedic surgery over the last years,as they enhance precision compared to conventional hardware.The expansion of computer assistance is evolvi... BACKGROUND Computer-assisted systems obtained an increased interest in orthopaedic surgery over the last years,as they enhance precision compared to conventional hardware.The expansion of computer assistance is evolving with the employment of augmented reality.Yet,the accuracy of augmented reality navigation systems has not been determined.AIM To examine the accuracy of component alignment and restoration of the affected limb’s mechanical axis in primary total knee arthroplasty(TKA),utilizing an augmented reality navigation system and to assess whether such systems are conspicuously fruitful for an accomplished knee surgeon.METHODS From May 2021 to December 2021,30 patients,25 women and five men,under-went a primary unilateral TKA.Revision cases were excluded.A preoperative radiographic procedure was performed to evaluate the limb’s axial alignment.All patients were operated on by the same team,without a tourniquet,utilizing three distinct prostheses with the assistance of the Knee+™augmented reality navigation system in every operation.Postoperatively,the same radiographic exam protocol was executed to evaluate the implants’position,orientation and coronal plane alignment.We recorded measurements in 3 stages regarding femoral varus and flexion,tibial varus and posterior slope.Firstly,the expected values from the Augmented Reality system were documented.Then we calculated the same values after each cut and finally,the same measurements were recorded radiolo-gically after the operations.Concerning statistical analysis,Lin’s concordance correlation coefficient was estimated,while Wilcoxon Signed Rank Test was performed when needed.RESULTS A statistically significant difference was observed regarding mean expected values and radiographic mea-surements for femoral flexion measurements only(Z score=2.67,P value=0.01).Nonetheless,this difference was statistically significantly lower than 1 degree(Z score=-4.21,P value<0.01).In terms of discrepancies in the calculations of expected values and controlled measurements,a statistically significant difference between tibial varus values was detected(Z score=-2.33,P value=0.02),which was also statistically significantly lower than 1 degree(Z score=-4.99,P value<0.01).CONCLUSION The results indicate satisfactory postoperative coronal alignment without outliers across all three different implants utilized.Augmented reality navigation systems can bolster orthopaedic surgeons’accuracy in achieving precise axial alignment.However,further research is required to further evaluate their efficacy and potential. 展开更多
关键词 Augmented reality ORTHOPEDICS Total knee arthroplasty ROBOTICS KNEE NAVIGATION
下载PDF
Energy-efficient joint UAV secure communication and 3D trajectory optimization assisted by reconfigurable intelligent surfaces in the presence of eavesdroppers
18
作者 Huang Hailong Mohsen Eskandari +1 位作者 Andrey V.Savkin Wei Ni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期537-543,共7页
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco... We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations. 展开更多
关键词 Unmanned aerial systems(UASs) Unmanned aerial vehicle(UAV) Communication security Eaves-dropping Reconfigurable intelligent surfaces(RIS) Autonomous navigation and placement Path planning Model predictive control
下载PDF
Don’t forget emergency surgery! Lessons to learn from elective indocyanine green-guided gastrointestinal interventions
19
作者 Davina Perini Jacopo Martellucci 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第2期270-275,共6页
Fluorescence-based imaging has found application in several fields of elective surgery,but there is still a lack of evidence in the literature about its use in the emergency setting.Clinical trials have consistently s... Fluorescence-based imaging has found application in several fields of elective surgery,but there is still a lack of evidence in the literature about its use in the emergency setting.Clinical trials have consistently shown that indocyanine green(ICG)-guided surgery can dramatically reduce the risk of postoperative complic-ations,length of in-hospital stay and total healthcare costs in the elective setting.It is well-known that emergency surgery has a higher complication rate than its elective counterpart,therefore an impelling need for research studies to explore,validate and develop this issue has been highlighted.The present editorial aims to provide a critical overview of currently available applications and pitfalls of ICG fluorescence in abdominal emergencies.Furthermore,we evidenced how the experience of ICG-fluorescence in elective surgery might be of great help in implementing its use in acute situations.In the first paragraph we analyzed the tips and tricks of ICG-guided cancer surgery that might be exploited in acute cases.We then deepened the two most described topics in ICG-guided emergency surgery:Acute cholecystitis and intestinal ischemia,focusing on both the advantages and limitations of green-fluorescence application in these two fields.In emergency situations,ICG fluorescence demonstrates a promising role in preventing undue intestinal resections or their entity,facilitating the detection of intestinal ischemic zones,identifying biliary tree anatomy,reducing post-operative complications,and mitigating high mortality rates.The need to improve its application still exists,therefore we strongly believe that the elective and routinary use of the dye is the best way to acquire the necessary skills for emer-gency procedures. 展开更多
关键词 Indocyanine green Fluorescence Navigation surgery ANGIOGRAPHY Emergency surgery Decision-making
下载PDF
Online Survivors Internet cafes must navigate strict government regulations to stay in business
20
作者 LU LING 《Beijing Review》 2006年第14期30-31,共2页
After a three-year suspension, on December 13, 2005. authorities in Shenzhen again began accepting business applications for Internet cafes. The first batch of newly licensed cafes began operation in February. Accordi... After a three-year suspension, on December 13, 2005. authorities in Shenzhen again began accepting business applications for Internet cafes. The first batch of newly licensed cafes began operation in February. According to the local government's plan, 746 cafes will be opened in Shenzhen, in addition to the existing 314 licensed ones. 展开更多
关键词 In net PI Online Survivors Internet cafes must navigate strict government regulations to stay in business
原文传递
上一页 1 2 60 下一页 到第
使用帮助 返回顶部