期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Marine target detection based on Marine-Faster R-CNN for navigation radar plane position indicator images 被引量:1
1
作者 Xiaolong CHEN Xiaoqian MU +2 位作者 Jian GUAN Ningbo LIU Wei ZHOU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第4期630-643,共14页
As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,... As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,for most common low-resolution radar plane position indicator(PPI)images,it is difficult to achieve good performance.In this paper,taking navigation radar PPI images as an example,a marine target detection method based on the Marine-Faster R-CNN algorithm is proposed in the case of complex background(e.g.,sea clutter)and target characteristics.The method performs feature extraction and target recognition on PPI images generated by radar echoes with the convolutional neural network(CNN).First,to improve the accuracy of detecting marine targets and reduce the false alarm rate,Faster R-CNN was optimized as the Marine-Faster R-CNN in five respects:new backbone network,anchor size,dense target detection,data sample balance,and scale normalization.Then,JRC(Japan Radio Co.,Ltd.)navigation radar was used to collect echo data under different conditions to build a marine target dataset.Finally,comparisons with the classic Faster R-CNN method and the constant false alarm rate(CFAR)algorithm proved that the proposed method is more accurate and robust,has stronger generalization ability,and can be applied to the detection of marine targets for navigation radar.Its performance was tested with datasets from different observation conditions(sea states,radar parameters,and different targets). 展开更多
关键词 Marine target detection navigation radar Plane position indicator(PPI)images Convolutional neural network(CNN) Faster R-CNN(region convolutional neural network)method
原文传递
A spawning particle filter for defocused moving target detection in GNSS-based passive radar
2
作者 ZENG Hongcheng DENG Jiadong +3 位作者 WANG Pengbo ZHOU Xinkai YANG Wei CHEN Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1085-1100,共16页
Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooper... Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooperative target motion is usually difficult to be compensated,as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective.Consequently,the moving target in GBPR image is usually defocused,which aggravates the difficulty of target detection even further.In this paper,a spawning particle filter(SPF)is proposed for defocused MTD.Firstly,the measurement model and the likelihood ratio function(LRF)of the defocused point-like target image are deduced.Then,a spawning particle set is generated for subsequent target detection,with reference to traditional particles in particle filter(PF)as their parent.After that,based on the PF estimator,the SPF algorithm and its sequential Monte Carlo(SMC)implementation are proposed with a novel amplitude estimation method to decrease the target state dimension.Finally,the effectiveness of the proposed SPF is demonstrated by numerical simulations and pre-liminary experimental results,showing that the target range and Doppler can be estimated accurately. 展开更多
关键词 Global navigation Satellite System(GNSS)-based passive radar(GBPR) defocused target moving target detec-tion(MTD) likelihood ratio function(LRF) spawning particle fil-ter(SPF)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部