Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be...Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.展开更多
The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation ...The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation of spoofing capability.However,current evaluation systems face challenges arising from the irrationality of previous weighting methods,inapplicability of the conventional multi-attribute decision-making method and uncertainty existing in evaluation.To solve these difficulties,considering the validity of the obtained results,an evaluation method based on the game aggregated weight model and a joint approach involving the grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)are firstly proposed to determine the optimal scheme.Static and dynamic evaluation results under different schemes are then obtained via a fuzzy comprehensive assessment and an improved dynamic game method,to prioritize the deceptive efficacy of the equipment accurately and make pointed improvement for its core performance.The use of judging indicators,including Spearman rank correlation coefficient and so on,combined with obtained evaluation results,demonstrates the superiority of the proposed method and the optimal scheme by the horizontal comparison of different methods and vertical comparison of evaluation results.Finally,the results of field measurements and simulation tests show that the proposed method can better overcome the difficulties of existing methods and realize the effective evaluation.展开更多
Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications.In this paper,the energetic electron detection package(EEDP)de...Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications.In this paper,the energetic electron detection package(EEDP)deployed on three Chinese navigation satellites in medium Earth orbit(MEO)is reviewed.The instrument was developed by the space science payload team led by Peking University.The EEDP includes a pinhole medium-energy electron spectrometer(MES),a high-energy electron detector(HED)based onΔE-E telescope technology,and a deep dielectric charging monitor(DDCM).The MES measures the energy spectra of 50−600 keV electrons from nine directions with a 180°×30°field of view(FOV).The HED measures the energy spectrum of 0.5−3.0 MeV electrons from one direction with a 30°cone-angle FOV.The ground test and calibration results indicate that these three sensors exhibit excellent performance.Preliminary observations show that the electron spectra measured by the MES and HED are in good agreement with the results from the magnetic electron-ion spectrometer(MagEIS)of the Van Allen Probes spacecraft,with an average relative deviation of 27.3%for the energy spectra.The charging currents and voltages measured by the DDCM during storms are consistent with the highenergy electron observations of the HED,demonstrating the effectiveness of the DDCM.The observations of the EEDP on board the three MEO satellites can provide important support for theoretical research on the radiation belts and the applications related to space weather.展开更多
A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two mo...A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two modified L-probes with quadrature phase difference. It has a 36.3% 10-dB return loss bandwidth and a 13% 3-dB axial ratio bandwidth, because of the orthogonal L-probes with 90° phase difference. The measured peak gain of the antenna is 3.9 dBic. It can detect the satellites at lower elevation as its half power beam-width (HPBW) is 113° in both the x-z and y-z planes, achieving a cross-polarization level of larger than 25 dB. Noticeably, the antenna achieves 89% size reduction compared with the conventional half wavelength patch antennas. It can be used in hand-held navigation devices of multiple GNSS such as COMPASS, Galileo, GPS and GLONASS.展开更多
The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applica...The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.展开更多
As the 16th BeiDou navigation satellite was successfully launched into space at 23:33 Beijing Time from the Xichang Satellite Launch Center (XSLC) on October 25, 2012, China completed the construction of the BeiDou Re...As the 16th BeiDou navigation satellite was successfully launched into space at 23:33 Beijing Time from the Xichang Satellite Launch Center (XSLC) on October 25, 2012, China completed the construction of the BeiDou Regional Navigation Satellite System that starts to officially provide services for most parts of the Asia-Pacific region from December 27. The 16th BeiDou navigation satellite, the last one for the regional BeiDou system, was developed by China Academy of Space Technology under CASC.展开更多
The transportation industry is one of the largest users of the BeiDou Navigation Satellite System(BDS),characterized by multiple locations,long lines,wide range,and extensive mobility.The application of BDS in the tra...The transportation industry is one of the largest users of the BeiDou Navigation Satellite System(BDS),characterized by multiple locations,long lines,wide range,and extensive mobility.The application of BDS in the transportation industry improves the development level of intelligent,safe,green and shared transportation.Based on the introduction of the application requirements and characteristics of BDS in the transportation industry,this paper systematically introduces the overall status of BDS in the transportation industry,covering highways,waterways,railways,civil aviation,and the postal service.Finally,the paper forecasts future applications of BDS in the field of transportation.It identifies within the transportation industry rich application scenarios for the cultivation of advanced technologies represented by BDS,enhancing transportation safety services and guaranteeing emergency communication,while improving the operation efficiency and management level of an integrated transportation system.展开更多
China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on Febr...China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on February 25 (Beijing time) and was put into the predetermined transfer orbit successfully.The geostationary satellite is the first BeiDou navigation satellite launched in 2012 for the展开更多
LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSL...LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSLC in Sichuan Province.展开更多
At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System sat...At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System satellites into the planned transfer orbit in space. It was the first time that China launched two BeiDou satellites with one rocket. It was展开更多
Autonomous navigation of navigation satellite is discussed. The method of auto-orbit determination using the erosslink range and orientation parameters constraining is put forward. On the basis of the analysis of its ...Autonomous navigation of navigation satellite is discussed. The method of auto-orbit determination using the erosslink range and orientation parameters constraining is put forward. On the basis of the analysis of its feasibility, some useful conclusions are given.展开更多
Raw observations(carrier-phase and code observations)from the Global Navigation Satellite System(GNSS)can now be accessed from Android mobile phones(Version 7.0 onwards).This paves the way for GNSS data to be utilized...Raw observations(carrier-phase and code observations)from the Global Navigation Satellite System(GNSS)can now be accessed from Android mobile phones(Version 7.0 onwards).This paves the way for GNSS data to be utilized for low-cost precise positioning or in ionospheric or tropospheric applications.This paper presents results from data collection campaigns using the CAMALIOT mobile app.In the frst campaign,116.3 billion measurements from 11,828 mobile devices were collected from all continents.Although participation decreased during the second campaign,data are still being collected globally.In this contribution,we demonstrate the potential of volunteered geographic information(VGl)from mobile phones to fill data gaps in geodetic station networks that collect GNSS data,e.g.in Brazil,but also how the data can provide a denser set of observations than current networks in countries across Europe.We also show that mobile phones capable of dual-frequency reception,which is an emerging technology that can provide a richer source of GNSS data,are contributing in a substantial way.Finally,we present the results from a survey of participants to indicate that participation is diverse in terms of backgrounds and geography,where the dominant motivation for participation is to contribute to scientific research.展开更多
Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
Global navigation satellite system has been widely used,but it is vulnerable to jamming.In military satellite communications,frequency hopping(FH)signal is usually used for anti-jamming communications.If the FH signal...Global navigation satellite system has been widely used,but it is vulnerable to jamming.In military satellite communications,frequency hopping(FH)signal is usually used for anti-jamming communications.If the FH signal can be used in satellite navigation,the anti-jamming ability of satellite navigation can be improved.Although a recently proposed timefrequency matrix ranging method(TFMR)can use FH signals to realize pseudorange measurement,it cannot transmit navigation messages using the ranging signal which is crucial for satellite navigation.In this article,we propose dual-tone binary frequency shift keyingbased TFMR(DBFSK-TFMR).DBFSK-TFMR designs an extended time-frequency matrix(ETFM)and its generation algorithm,which can use the frequency differences in different dual-tone signals in ETFM to modulate data and eliminate the negative impact of data modulation on pseudorange measurement.Using ETFM,DBFSK-TFMR not only realizes the navigation message transmission but also ensures the precision and unambiguous measurement range of pseudorange measurement.DBFSK-TFMR can be used as an integrated solution for anti-jamming communication and navigation based on FH signals.Simulation results show that DBFSK-TFMR has almost the same ranging performance as TFMR.展开更多
BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satel...BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.展开更多
With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to impr...With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to improve the GNSS performance and expand its applications,Low Earth Orbit(LEO)Enhanced Global Navigation Satellite System(LeGNSS)is being vigorously advocated.Combined with high-,medium-,and low-earth orbit satellites,it can improve GNSS performance in terms of orbit determination,Precise Point Positioning(PPP)convergence time,etc.This paper comprehensively reviews the current status of LeGNSS,focusing on analyzing its advantages and challenges for precise orbit and clock determination,PPP convergence,earth rotation parameter estimation,and global ionosphere modeling.Thanks to the fast geometric change brought by LEO satellites,LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation.The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed.However,there are still some issues to overcome,such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination.展开更多
Several noteworthy breakthroughs have been made with the BeiDou Navigation Satellite System(BDS)and other global navigation satellite systems as well as the associated augmentation systems,such as the commissioning of...Several noteworthy breakthroughs have been made with the BeiDou Navigation Satellite System(BDS)and other global navigation satellite systems as well as the associated augmentation systems,such as the commissioning of the BDS-3 preliminary system and the successful launch of the first BDS-3 GEO satellite which carries the satellite-based augmentation payload.Presently,BDS can provide basic services globally,and its augmentation system is also being tested.This paper gives an overview of BDS and satellite navigation augmentation technologies.This overview is divided into four parts,which include the system segment technologies,satellite segment technologies,propagation segment technologies,and user segment technologies.In each part,these technologies are described from the perspectives of preliminary information,research progress,and summary.Moreover,the significance and progress of the BeiDou Satellite-based Augmentation System(BDSBAS),low earth orbit augmentation,and the national BeiDou ground-based augmentation system are presented,along with the airborne-based augmentation system.Furthermore,the conclusions and discussions covering popular topics for research,frontiers in research and development,achievements,and suggestions are listed for future research.展开更多
In recent years,geological and mineral resources exploration in China has expanded to deep hinterland of the Qinghai−Tibet Plateau and other regions with complex geological conditions.The special natural conditions of...In recent years,geological and mineral resources exploration in China has expanded to deep hinterland of the Qinghai−Tibet Plateau and other regions with complex geological conditions.The special natural conditions of Qinghai−Tibet Plateau determine the characteristics of“life-forbidden zone”that is characterized by alpine hypoxia,changeable weather,complex road conditions,and beast attack.In particular,the work in wild depopulated zones with severe environment and poor communications imposes serious threats to the life safety of geological personnel.Therefore,how to guarantee the safety of geological personnel working on the Qinghai−Tibet Plateau and how to reduce or even avoid casualty of geological personnel have currently become the urgent challenge.In this study,an emergency rescue information system for field geological survey is constructed based on BeiDou Navigation Satellite System.A case study of emergency rescue has been conducted in the depopulated zone of the Qinghai−Tibet Plateau and good effects have been achieved,providing security assurance for personnel engaged in field geological survey on the Qinghai−Tibet Plateau and technical support for the emergency rescue in case of natural hazards on the Qinghai−Tibet Plateau.The BeiDou Navigation Satellite System(BDS)can be effectively used to locate and communicate in the emergency rescue for rigorous Geological survey task where there is no network signal for the mobile phone,and the emergency rescue guarantee system is independent,reliable,and relatively cheap.The application value of BDS is demonstrated in the geological field.展开更多
This paper presents the design of an observation operator for assimilation of global navigation satellite system(GNSS) radio occultation(RO) refractivity and the related operational implementation strategy in the ...This paper presents the design of an observation operator for assimilation of global navigation satellite system(GNSS) radio occultation(RO) refractivity and the related operational implementation strategy in the global GRAPES variational data assimilation system.A preliminary assessment of the RO data assimilation effect is performed.The results show that the RO data are one of the most important observation types in GRAPES,as they have a significant positive impact on the analysis and forecast at all ranges,especially in the Southern Hemisphere and the global stratosphere where in-situ measurements are lacking.The GRAPES model error cannot be controlled in the Southern Hemisphere without RO data being assimilated.In addition,it is found that the RO data play a key role in the stable running of the GRAPES global assimilation and forecast system.Even in a relatively simple global data assimilation experiment,in which only the conventional and RO data are assimilated,the system is able to run for more than nine months without drift compared with NCEP analyses.The analysis skills in both the Northern and Southern Hemispheres are still relatively comparable even after nine-month integration,especially in the stratosphere where the number of conventional observations decreases and RO observations with a uniform global coverage dominate gradually.展开更多
Pseudorange bias has become a practical obstacle in the field of high-precision global navigation satellite system(GNSS)applications,which greatly restricts the further development of high-precision applications.Unfor...Pseudorange bias has become a practical obstacle in the field of high-precision global navigation satellite system(GNSS)applications,which greatly restricts the further development of high-precision applications.Unfortunately,no studies have been conducted on the pseudorange biases of the BeiDou navigation satellite system(BDS).To mitigate the effects of pseudorange biases on the BDS performance to the greatest extent possible,the origin of such BDS pseudorange biases are first thoroughly illustrated,based upon which the dependency of the biases on the receiver configurations are studied in detail.Owing to the limitations regarding the parameter re-settings for hardware receivers,software receiver technology was used to achieve the ergodicity of the receiver parameters,such as the correlator spacing and front-end bandwidth,using high-fidelity signal observations collected by a 40-m-high gain dish antenna at Haoping Observatory.Based on this,the pseudorange biases of the BDS B1I and B3I signals and their dependency on different correlator spacings and front-end bandwidths were adequately provided.Finally,herein,the suggested settings of the correlator spacing and front-end bandwidth for BDS receivers are in detail proposed for the first time.As a result,the pseudorange biases of the BDS signals will be less than 20 cm,reaching even under 10 cm,under this condition.This study will provide special attention to GNSS pseudorange biases,and will significantly promote a clear definition of the appropriate receiver parameter settings in the interface control documents of BDS and other individual satellite systems.展开更多
基金supported by the National Natural Science Foundation of China(61773120)the National Natural Science Fund for Distinguished Young Scholars of China(61525304)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Hunan Postgraduate Research Innovation Project(CX2018B022)the China Scholarship Council-Leiden University Scholarship。
文摘Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.
基金supported by the National Natural Science Foundation of China(41804035,41374027)。
文摘The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation of spoofing capability.However,current evaluation systems face challenges arising from the irrationality of previous weighting methods,inapplicability of the conventional multi-attribute decision-making method and uncertainty existing in evaluation.To solve these difficulties,considering the validity of the obtained results,an evaluation method based on the game aggregated weight model and a joint approach involving the grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)are firstly proposed to determine the optimal scheme.Static and dynamic evaluation results under different schemes are then obtained via a fuzzy comprehensive assessment and an improved dynamic game method,to prioritize the deceptive efficacy of the equipment accurately and make pointed improvement for its core performance.The use of judging indicators,including Spearman rank correlation coefficient and so on,combined with obtained evaluation results,demonstrates the superiority of the proposed method and the optimal scheme by the horizontal comparison of different methods and vertical comparison of evaluation results.Finally,the results of field measurements and simulation tests show that the proposed method can better overcome the difficulties of existing methods and realize the effective evaluation.
基金supported by the National Natural Science Foundation of China(No.41374167,41421003,41474140)China's National Basic Research and Development Program(No.2012CB825603).
文摘Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications.In this paper,the energetic electron detection package(EEDP)deployed on three Chinese navigation satellites in medium Earth orbit(MEO)is reviewed.The instrument was developed by the space science payload team led by Peking University.The EEDP includes a pinhole medium-energy electron spectrometer(MES),a high-energy electron detector(HED)based onΔE-E telescope technology,and a deep dielectric charging monitor(DDCM).The MES measures the energy spectra of 50−600 keV electrons from nine directions with a 180°×30°field of view(FOV).The HED measures the energy spectrum of 0.5−3.0 MeV electrons from one direction with a 30°cone-angle FOV.The ground test and calibration results indicate that these three sensors exhibit excellent performance.Preliminary observations show that the electron spectra measured by the MES and HED are in good agreement with the results from the magnetic electron-ion spectrometer(MagEIS)of the Van Allen Probes spacecraft,with an average relative deviation of 27.3%for the energy spectra.The charging currents and voltages measured by the DDCM during storms are consistent with the highenergy electron observations of the HED,demonstrating the effectiveness of the DDCM.The observations of the EEDP on board the three MEO satellites can provide important support for theoretical research on the radiation belts and the applications related to space weather.
基金supported by the NSFC-Guangdong (Grant No.U1035002) and NSFC-NSAF (Grant No.10976010)National Key Project of Science and Technology of China (Grant No. 2009ZX03006-003)the Technology Key Projects of Guangdong Province of China (Grant Nos.2009A080207006 and 2009A080207002)
文摘A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two modified L-probes with quadrature phase difference. It has a 36.3% 10-dB return loss bandwidth and a 13% 3-dB axial ratio bandwidth, because of the orthogonal L-probes with 90° phase difference. The measured peak gain of the antenna is 3.9 dBic. It can detect the satellites at lower elevation as its half power beam-width (HPBW) is 113° in both the x-z and y-z planes, achieving a cross-polarization level of larger than 25 dB. Noticeably, the antenna achieves 89% size reduction compared with the conventional half wavelength patch antennas. It can be used in hand-held navigation devices of multiple GNSS such as COMPASS, Galileo, GPS and GLONASS.
文摘The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.
文摘As the 16th BeiDou navigation satellite was successfully launched into space at 23:33 Beijing Time from the Xichang Satellite Launch Center (XSLC) on October 25, 2012, China completed the construction of the BeiDou Regional Navigation Satellite System that starts to officially provide services for most parts of the Asia-Pacific region from December 27. The 16th BeiDou navigation satellite, the last one for the regional BeiDou system, was developed by China Academy of Space Technology under CASC.
文摘The transportation industry is one of the largest users of the BeiDou Navigation Satellite System(BDS),characterized by multiple locations,long lines,wide range,and extensive mobility.The application of BDS in the transportation industry improves the development level of intelligent,safe,green and shared transportation.Based on the introduction of the application requirements and characteristics of BDS in the transportation industry,this paper systematically introduces the overall status of BDS in the transportation industry,covering highways,waterways,railways,civil aviation,and the postal service.Finally,the paper forecasts future applications of BDS in the field of transportation.It identifies within the transportation industry rich application scenarios for the cultivation of advanced technologies represented by BDS,enhancing transportation safety services and guaranteeing emergency communication,while improving the operation efficiency and management level of an integrated transportation system.
文摘China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on February 25 (Beijing time) and was put into the predetermined transfer orbit successfully.The geostationary satellite is the first BeiDou navigation satellite launched in 2012 for the
文摘LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSLC in Sichuan Province.
文摘At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System satellites into the planned transfer orbit in space. It was the first time that China launched two BeiDou satellites with one rocket. It was
文摘Autonomous navigation of navigation satellite is discussed. The method of auto-orbit determination using the erosslink range and orientation parameters constraining is put forward. On the basis of the analysis of its feasibility, some useful conclusions are given.
基金supported by the European Space Agency’s Navigation Science Office through the NAVISP Element 1 Program in the CAMALIOT(Application of Machine Learning Technology for GNSS IoT Data Fusion)project(NAVISP-EL1-038.2).
文摘Raw observations(carrier-phase and code observations)from the Global Navigation Satellite System(GNSS)can now be accessed from Android mobile phones(Version 7.0 onwards).This paves the way for GNSS data to be utilized for low-cost precise positioning or in ionospheric or tropospheric applications.This paper presents results from data collection campaigns using the CAMALIOT mobile app.In the frst campaign,116.3 billion measurements from 11,828 mobile devices were collected from all continents.Although participation decreased during the second campaign,data are still being collected globally.In this contribution,we demonstrate the potential of volunteered geographic information(VGl)from mobile phones to fill data gaps in geodetic station networks that collect GNSS data,e.g.in Brazil,but also how the data can provide a denser set of observations than current networks in countries across Europe.We also show that mobile phones capable of dual-frequency reception,which is an emerging technology that can provide a richer source of GNSS data,are contributing in a substantial way.Finally,we present the results from a survey of participants to indicate that participation is diverse in terms of backgrounds and geography,where the dominant motivation for participation is to contribute to scientific research.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
文摘Global navigation satellite system has been widely used,but it is vulnerable to jamming.In military satellite communications,frequency hopping(FH)signal is usually used for anti-jamming communications.If the FH signal can be used in satellite navigation,the anti-jamming ability of satellite navigation can be improved.Although a recently proposed timefrequency matrix ranging method(TFMR)can use FH signals to realize pseudorange measurement,it cannot transmit navigation messages using the ranging signal which is crucial for satellite navigation.In this article,we propose dual-tone binary frequency shift keyingbased TFMR(DBFSK-TFMR).DBFSK-TFMR designs an extended time-frequency matrix(ETFM)and its generation algorithm,which can use the frequency differences in different dual-tone signals in ETFM to modulate data and eliminate the negative impact of data modulation on pseudorange measurement.Using ETFM,DBFSK-TFMR not only realizes the navigation message transmission but also ensures the precision and unambiguous measurement range of pseudorange measurement.DBFSK-TFMR can be used as an integrated solution for anti-jamming communication and navigation based on FH signals.Simulation results show that DBFSK-TFMR has almost the same ranging performance as TFMR.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41020144004,41374019,41104022)the National High Technology Research and Development Program of China(Grant No.2013AA122501)
文摘BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.
基金the National Natural Science Funds of China[grant numbers 41874030,42074026]Natural Science Funds of Shanghai[grant number 21ZR1465600]+3 种基金the Program of Shanghai Academic Research Leader[grant number 20XD1423800]the Innovation Program of Shanghai Municipal Education Commission[grant number 2021-01-07-00-07-E00095]the“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission[grant number 20SG18]the Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee[grant numbers 20511103302,20511103402 and 20511103702].
文摘With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to improve the GNSS performance and expand its applications,Low Earth Orbit(LEO)Enhanced Global Navigation Satellite System(LeGNSS)is being vigorously advocated.Combined with high-,medium-,and low-earth orbit satellites,it can improve GNSS performance in terms of orbit determination,Precise Point Positioning(PPP)convergence time,etc.This paper comprehensively reviews the current status of LeGNSS,focusing on analyzing its advantages and challenges for precise orbit and clock determination,PPP convergence,earth rotation parameter estimation,and global ionosphere modeling.Thanks to the fast geometric change brought by LEO satellites,LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation.The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed.However,there are still some issues to overcome,such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination.
基金the National Natural Science Foundation of China(No.61571309)Talent Project of Revitalization Liaoning(No.XLYC1907022)+1 种基金Natural Science Foundation of Liaoning Province(No.2019-MS-251)High-Level Innovation Talent Project of Shenyang(No.RC190030).
文摘Several noteworthy breakthroughs have been made with the BeiDou Navigation Satellite System(BDS)and other global navigation satellite systems as well as the associated augmentation systems,such as the commissioning of the BDS-3 preliminary system and the successful launch of the first BDS-3 GEO satellite which carries the satellite-based augmentation payload.Presently,BDS can provide basic services globally,and its augmentation system is also being tested.This paper gives an overview of BDS and satellite navigation augmentation technologies.This overview is divided into four parts,which include the system segment technologies,satellite segment technologies,propagation segment technologies,and user segment technologies.In each part,these technologies are described from the perspectives of preliminary information,research progress,and summary.Moreover,the significance and progress of the BeiDou Satellite-based Augmentation System(BDSBAS),low earth orbit augmentation,and the national BeiDou ground-based augmentation system are presented,along with the airborne-based augmentation system.Furthermore,the conclusions and discussions covering popular topics for research,frontiers in research and development,achievements,and suggestions are listed for future research.
基金This study was supported by the Public Beneficial Industrial Funds by the Ministry of Land and Resources of China[grant number 201011010].
文摘In recent years,geological and mineral resources exploration in China has expanded to deep hinterland of the Qinghai−Tibet Plateau and other regions with complex geological conditions.The special natural conditions of Qinghai−Tibet Plateau determine the characteristics of“life-forbidden zone”that is characterized by alpine hypoxia,changeable weather,complex road conditions,and beast attack.In particular,the work in wild depopulated zones with severe environment and poor communications imposes serious threats to the life safety of geological personnel.Therefore,how to guarantee the safety of geological personnel working on the Qinghai−Tibet Plateau and how to reduce or even avoid casualty of geological personnel have currently become the urgent challenge.In this study,an emergency rescue information system for field geological survey is constructed based on BeiDou Navigation Satellite System.A case study of emergency rescue has been conducted in the depopulated zone of the Qinghai−Tibet Plateau and good effects have been achieved,providing security assurance for personnel engaged in field geological survey on the Qinghai−Tibet Plateau and technical support for the emergency rescue in case of natural hazards on the Qinghai−Tibet Plateau.The BeiDou Navigation Satellite System(BDS)can be effectively used to locate and communicate in the emergency rescue for rigorous Geological survey task where there is no network signal for the mobile phone,and the emergency rescue guarantee system is independent,reliable,and relatively cheap.The application value of BDS is demonstrated in the geological field.
基金Supported by the National Natural Science Foundation of China(41075081)China Meteorological Administration Special Public Welfare Research Fund(GYHY201106008 and GYHY201206007)
文摘This paper presents the design of an observation operator for assimilation of global navigation satellite system(GNSS) radio occultation(RO) refractivity and the related operational implementation strategy in the global GRAPES variational data assimilation system.A preliminary assessment of the RO data assimilation effect is performed.The results show that the RO data are one of the most important observation types in GRAPES,as they have a significant positive impact on the analysis and forecast at all ranges,especially in the Southern Hemisphere and the global stratosphere where in-situ measurements are lacking.The GRAPES model error cannot be controlled in the Southern Hemisphere without RO data being assimilated.In addition,it is found that the RO data play a key role in the stable running of the GRAPES global assimilation and forecast system.Even in a relatively simple global data assimilation experiment,in which only the conventional and RO data are assimilated,the system is able to run for more than nine months without drift compared with NCEP analyses.The analysis skills in both the Northern and Southern Hemispheres are still relatively comparable even after nine-month integration,especially in the stratosphere where the number of conventional observations decreases and RO observations with a uniform global coverage dominate gradually.
基金the National Nature Science Foundation of China(Nos.61501430 and 41604029)the State Key Laboratory of Geo-information Engineering(SKLGIE2017-M-2-2)。
文摘Pseudorange bias has become a practical obstacle in the field of high-precision global navigation satellite system(GNSS)applications,which greatly restricts the further development of high-precision applications.Unfortunately,no studies have been conducted on the pseudorange biases of the BeiDou navigation satellite system(BDS).To mitigate the effects of pseudorange biases on the BDS performance to the greatest extent possible,the origin of such BDS pseudorange biases are first thoroughly illustrated,based upon which the dependency of the biases on the receiver configurations are studied in detail.Owing to the limitations regarding the parameter re-settings for hardware receivers,software receiver technology was used to achieve the ergodicity of the receiver parameters,such as the correlator spacing and front-end bandwidth,using high-fidelity signal observations collected by a 40-m-high gain dish antenna at Haoping Observatory.Based on this,the pseudorange biases of the BDS B1I and B3I signals and their dependency on different correlator spacings and front-end bandwidths were adequately provided.Finally,herein,the suggested settings of the correlator spacing and front-end bandwidth for BDS receivers are in detail proposed for the first time.As a result,the pseudorange biases of the BDS signals will be less than 20 cm,reaching even under 10 cm,under this condition.This study will provide special attention to GNSS pseudorange biases,and will significantly promote a clear definition of the appropriate receiver parameter settings in the interface control documents of BDS and other individual satellite systems.