Although various estimating methods have been developed for measuring Q from near-surface seismic data, less thought has been given to the accuracy of Q obtained. The errors of Q depend on the ways of measuring Q and ...Although various estimating methods have been developed for measuring Q from near-surface seismic data, less thought has been given to the accuracy of Q obtained. The errors of Q depend on the ways of measuring Q and the computation techniques used in estimating. The main purpose of this paper is to give a compre- hensive evaluation for the accuracy of measuring near-surface Q. We discuss the possible origins from which errors may develop, and provide a statistical guide to the accuracy that can be expected. A set of real data based on the improved spectral ratio method for near-surface Q was used as an example of validation and sensitivity analysis. The Bonferroni procedure was adopted for deriving the joint confidence intervals for k and n of the power law model. The same approach with modest modification may be applied to analyze the accuracy of Q estimated by other methods.展开更多
The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) ...The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) is proposed. With the benefit of the graphic card, the GRECO prediction method is faster and more accurate than other methods. The proposed method at the first time considers the special case that the targets cannot be completely covered by radar beams, which makes the prediction of radar tracking errors more self-contained in practical circumstances. On the other hand, the process of the scattering center extraction is omitted, resulting in possible angular glint prediction in real time. Comparisons between the simulation results and the theoretical ones validate its correctness and value to academic research and engineering applications.展开更多
Most of the direction of arrival(DOA) estimation methods often need the exact array manifold, but in actual applications,the gain and phase of the channels are usually inconsistent, which will cause the estimation inv...Most of the direction of arrival(DOA) estimation methods often need the exact array manifold, but in actual applications,the gain and phase of the channels are usually inconsistent, which will cause the estimation invalid. A novel direction finding approach for mixed far-field and near-field signals with gain-phase error array is provided. Based on simplifying the space spectrum function by matrix transformation, DOA of far-field signals is obtained. Consequently, errors of the array are acquired according to the orthogonality of far-field signal subspace and noise subspace.Finally, DOA of near-field signals can be estimated. The method merely needs one-dimensional spectrum searching, so as to improve the computational efficiency on the premise of ensuring a certain accuracy, simulation results manifest the effectiveness of the method.展开更多
文摘Although various estimating methods have been developed for measuring Q from near-surface seismic data, less thought has been given to the accuracy of Q obtained. The errors of Q depend on the ways of measuring Q and the computation techniques used in estimating. The main purpose of this paper is to give a compre- hensive evaluation for the accuracy of measuring near-surface Q. We discuss the possible origins from which errors may develop, and provide a statistical guide to the accuracy that can be expected. A set of real data based on the improved spectral ratio method for near-surface Q was used as an example of validation and sensitivity analysis. The Bonferroni procedure was adopted for deriving the joint confidence intervals for k and n of the power law model. The same approach with modest modification may be applied to analyze the accuracy of Q estimated by other methods.
基金supported by the National Natural Science Foundation of China (60871069)
文摘The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) is proposed. With the benefit of the graphic card, the GRECO prediction method is faster and more accurate than other methods. The proposed method at the first time considers the special case that the targets cannot be completely covered by radar beams, which makes the prediction of radar tracking errors more self-contained in practical circumstances. On the other hand, the process of the scattering center extraction is omitted, resulting in possible angular glint prediction in real time. Comparisons between the simulation results and the theoretical ones validate its correctness and value to academic research and engineering applications.
基金supported by the National Natural Science Foundation of China(6150117661505050)+5 种基金the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2016017)the Natural Science Foundation of Heilongjiang Province(F2015015)the Outstanding Young Scientist Foundation of Heilongjiang University(JCL201504)the China Postdoctoral Science Foundation(2014M561381)the Postdoctoral Foundation of Heilongjiang Province(LBH-Z14178)the Special Research Funds for the Universities of Heilongjiang Province(HDRCCX-2016Z10)
文摘Most of the direction of arrival(DOA) estimation methods often need the exact array manifold, but in actual applications,the gain and phase of the channels are usually inconsistent, which will cause the estimation invalid. A novel direction finding approach for mixed far-field and near-field signals with gain-phase error array is provided. Based on simplifying the space spectrum function by matrix transformation, DOA of far-field signals is obtained. Consequently, errors of the array are acquired according to the orthogonality of far-field signal subspace and noise subspace.Finally, DOA of near-field signals can be estimated. The method merely needs one-dimensional spectrum searching, so as to improve the computational efficiency on the premise of ensuring a certain accuracy, simulation results manifest the effectiveness of the method.