In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and alg...In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example, and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.展开更多
Because of the ill-posedness of the near-field acoustic holography(NAH),the regularization method is required to stabilize the computational process of NAH.The regularization effect is related to how to select the p...Because of the ill-posedness of the near-field acoustic holography(NAH),the regularization method is required to stabilize the computational process of NAH.The regularization effect is related to how to select the parameter correctly and effectively.However the L-curve method commonly used for the selection of regularization parameters has the disadvantages of wrong selection and incorrect selection,which influences the application of NAH.For the purpose of solving the problems existed in the L-curve method,the (?)-curve method is introduced into the field of NAH,and the performance applied to NAH directly is analyzed on the basis of equivalent source method-based NAH.However,it is found out via investigations that the(?)-curve method in NAH also has the problem of wrong selection and is unable to choose the regularization parameter correctly.In order to select the parameter correctly and effectively,a novel method for selecting regularization parameters is proposed based on the original(?)-curve method,which can be called improved (?)-curve method.In the proposed method the regularization parameters are discretized linearly between the largest singular value and the smallest singular value,and the solution norm and the residual norm corresponding to these regularization parameters are also described in a linear coordinate instead of in a lg-lg coordinate,which are the two main differences compared with the L-curve and with the original(?)-curve method.In linear coordinate and using the linearly discretized regularization parameters,the solution norm is a monotonically decreasing function of the residual norm as the increase of the regularization parameter,moreover the curve is convex everywhere.So the regularization parameters can be selected correctly and effectively based on the improved(?)-curve method.Then a numerical simulation is done with a simply supported plate to verify the validity of the proposed method.Experiments with two actual sources,a clamped plate and the double speakers,are carried out to do a further demonstration.The simulation result as well as the experimental result shows that the improved(?)-curve method is efficacious and has some advantages over the L-curve method and the original(?)-curve method.The proposed novel method is able to avoid the problem of wrong selection and to select the regularization parameter correctly even if the curve is smooth.展开更多
Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-fiel...Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.展开更多
Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does n...Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does not require the complex numerical integrals.Equivalent source method(ESM),as a classical WS approach,is widely used due to its simplicity and efficiency.In the ESM,a virtual source surface is introduced,on which the virtual point sources are taken as the assumed sources,and an optimal retreat distance needs to be considered.A newly proposed WS-based approach,the element radiation superposition method(ERSM),uses piston surface source as the assumed source with no need to choose a virtual source surface.To satisfy the application conditions of piston pressure formula,the sizes of pistons are assumed to be as small as possible,which results in a large number of pistons and sampling points.In this paper,transfer matrix modes(TMMs),which are composed of the singular vectors of the vibro-acoustic transfer matrix,are used as the sparse basis of piston normal velocities.Then,the compressive ERSM based on TMMs is proposed.Compared with the conventional ERSM,the proposed method maintains a good pressure reconstruction when the number of sampling points and pistons are both reduced.Besides,the proposed method is compared with the compressive ESM in a mathematical sense.Both simulations and experiments for a rectangular plate demonstrate the advantage of the proposed method over the existing methods.展开更多
On the basis of nearfield acoustic holography (NAH) based on the equivalent source method (ESM), patch NAH based on the ESM is proposed. The method overcomes the shortcoming in the conventional NAH that the hologram s...On the basis of nearfield acoustic holography (NAH) based on the equivalent source method (ESM), patch NAH based on the ESM is proposed. The method overcomes the shortcoming in the conventional NAH that the hologram surface should be larger than the source surface. It need not to discretize the whole source and its measurement need not to cover the whole source. The measurement may be performed over the region of interest, and the reconstruction can be done in the region directly. The method is flexible in applications, stable in computation, and very easy to implement. It has good potential applications in engineering. The nu- merical simulations show the invalidity of the conventional NAH based on the ESM and prove the validities of the proposed method for reconstructing a partial source and the regularization for reducing the error effect of the pressure measured on the hologram surface.展开更多
The conventional nearfield acoustic holography(NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper i...The conventional nearfield acoustic holography(NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.展开更多
基金This project is supported by National Natural Science Foundation of China (No.10504006, No.50575063).
文摘In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example, and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.
基金supported by National Natural Science Foundation of China(Grant No.11004045,No.10974040)Fok Ying Tung Education Foundation of China(Grant No.111058)Program for New Century Excellent Talents in University of China(Grant No.NCET-08-0767)
文摘Because of the ill-posedness of the near-field acoustic holography(NAH),the regularization method is required to stabilize the computational process of NAH.The regularization effect is related to how to select the parameter correctly and effectively.However the L-curve method commonly used for the selection of regularization parameters has the disadvantages of wrong selection and incorrect selection,which influences the application of NAH.For the purpose of solving the problems existed in the L-curve method,the (?)-curve method is introduced into the field of NAH,and the performance applied to NAH directly is analyzed on the basis of equivalent source method-based NAH.However,it is found out via investigations that the(?)-curve method in NAH also has the problem of wrong selection and is unable to choose the regularization parameter correctly.In order to select the parameter correctly and effectively,a novel method for selecting regularization parameters is proposed based on the original(?)-curve method,which can be called improved (?)-curve method.In the proposed method the regularization parameters are discretized linearly between the largest singular value and the smallest singular value,and the solution norm and the residual norm corresponding to these regularization parameters are also described in a linear coordinate instead of in a lg-lg coordinate,which are the two main differences compared with the L-curve and with the original(?)-curve method.In linear coordinate and using the linearly discretized regularization parameters,the solution norm is a monotonically decreasing function of the residual norm as the increase of the regularization parameter,moreover the curve is convex everywhere.So the regularization parameters can be selected correctly and effectively based on the improved(?)-curve method.Then a numerical simulation is done with a simply supported plate to verify the validity of the proposed method.Experiments with two actual sources,a clamped plate and the double speakers,are carried out to do a further demonstration.The simulation result as well as the experimental result shows that the improved(?)-curve method is efficacious and has some advantages over the L-curve method and the original(?)-curve method.The proposed novel method is able to avoid the problem of wrong selection and to select the regularization parameter correctly even if the curve is smooth.
基金was supported by the National Natural Science Foundation of China (Grant No. 51310080202)
文摘Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.
基金Project supported by the National Natural Science Foundation of China(Grant No.61701133)。
文摘Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does not require the complex numerical integrals.Equivalent source method(ESM),as a classical WS approach,is widely used due to its simplicity and efficiency.In the ESM,a virtual source surface is introduced,on which the virtual point sources are taken as the assumed sources,and an optimal retreat distance needs to be considered.A newly proposed WS-based approach,the element radiation superposition method(ERSM),uses piston surface source as the assumed source with no need to choose a virtual source surface.To satisfy the application conditions of piston pressure formula,the sizes of pistons are assumed to be as small as possible,which results in a large number of pistons and sampling points.In this paper,transfer matrix modes(TMMs),which are composed of the singular vectors of the vibro-acoustic transfer matrix,are used as the sparse basis of piston normal velocities.Then,the compressive ERSM based on TMMs is proposed.Compared with the conventional ERSM,the proposed method maintains a good pressure reconstruction when the number of sampling points and pistons are both reduced.Besides,the proposed method is compared with the compressive ESM in a mathematical sense.Both simulations and experiments for a rectangular plate demonstrate the advantage of the proposed method over the existing methods.
基金the National Natural Science Foundation of China (Grant Nos. 10504006 and 50675056) the Research Fund for the Doctoral Program of Higher Education (Grant No. 20060359003)
文摘On the basis of nearfield acoustic holography (NAH) based on the equivalent source method (ESM), patch NAH based on the ESM is proposed. The method overcomes the shortcoming in the conventional NAH that the hologram surface should be larger than the source surface. It need not to discretize the whole source and its measurement need not to cover the whole source. The measurement may be performed over the region of interest, and the reconstruction can be done in the region directly. The method is flexible in applications, stable in computation, and very easy to implement. It has good potential applications in engineering. The nu- merical simulations show the invalidity of the conventional NAH based on the ESM and prove the validities of the proposed method for reconstructing a partial source and the regularization for reducing the error effect of the pressure measured on the hologram surface.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274087 and 51322505)the Research Fund for the Doctoral Program of Higher Education(Grant No.20100111110007)
文摘The conventional nearfield acoustic holography(NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.