Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laborat...Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.展开更多
Near infrared chemical imaging(NIR-CI)combines conventional near infrared(NIR)spectros-copy with chemical imaging,thus provides spectral and spatial information simult aneously.It could be utilized to visualize the sp...Near infrared chemical imaging(NIR-CI)combines conventional near infrared(NIR)spectros-copy with chemical imaging,thus provides spectral and spatial information simult aneously.It could be utilized to visualize the spatial distribution of the ingredients in a sample.The data acquired using NIR CI instrument are hyperspectral data cube(hypercube)containing thousands of spectra.Chemometric methodologies are necessary to transform spectral information into chemical information.Partial least squares(PLS)method was performed to extract chemical information of chlorpheniramine maleate in pharmaceutical formulations.A series of samples which consisted of different CPM concentrations(w/w)were compressed and hypercube data were measured.The spectra extracted from the hypercube were used to establish the PLS model of CPM.The results of the model were R^(2)_(val)0.981,RMSEC 0.384%,RMSECV 0.483%,RMSEP 0.631%,indicating that this model was reliable.展开更多
Near infrared(NIR)fluorescence imaging guided photodynamic therapy(PDT)is a technique which has been developed in many clinical trials due to its advantage of real-time optical monitoring,specific spatiotemporal selec...Near infrared(NIR)fluorescence imaging guided photodynamic therapy(PDT)is a technique which has been developed in many clinical trials due to its advantage of real-time optical monitoring,specific spatiotemporal selectivity,and minimal invasiveness.For this,photosensitizers with NIR fluorescence emission and high^(1)O_(2)generation quantum yield are highly desirable.Herein,we designed and synthesized a"donor-acceptor"(D-A)structured semiconductor polymer(SP),which was then wrapped with an amphiphilic compound(Pluronic■F127)to prepare water-soluble nanoparticles(F-SP NPs).The obtained F-SP NPs exhibit good water solubility,excellent particle size stability,strong absorbance at deep red region,and strong NIR fluorescent emission characteristics.The maximal mass extinction coe±cient and fluorescence quantum yield of these F-SPs were calculated to be 21.7 L/(g·cm)and 6.5%,respectively.Moreover,the^(1)O_(2)quantum yield of 89%for F-SP NPs has been achieved under 635 nm laser irradiation,which is higher than Methylene Blue,Ce6,and PpIX.The outstanding properties of these F-SP NPs originate from their unique D-A molecular characteristic.This work should help guide the design of novel semiconductor polymer for NIR fluorescent imaging guided PDT applications.展开更多
BACKGROUND Gastric cancer is a common malignant tumor of the digestive system worldwide,and its early diagnosis is crucial to improve the survival rate of patients.Indocyanine green fluorescence imaging(ICG-FI),as a n...BACKGROUND Gastric cancer is a common malignant tumor of the digestive system worldwide,and its early diagnosis is crucial to improve the survival rate of patients.Indocyanine green fluorescence imaging(ICG-FI),as a new imaging technology,has shown potential application prospects in oncology surgery.The meta-analysis to study the application value of ICG-FI in the diagnosis of gastric cancer sentinel lymph node biopsy is helpful to comprehensively evaluate the clinical effect of this technology and provide more reliable guidance for clinical practice.AIM To assess the diagnostic efficacy of optical imaging in conjunction with indocya-nine green(ICG)-guided sentinel lymph node(SLN)biopsy for gastric cancer.METHODS Electronic databases such as PubMed,Embase,Medline,Web of Science,and the Cochrane Library were searched for prospective diagnostic tests of optical imaging combined with ICG-guided SLN biopsy.Stata 12.0 software was used for analysis by combining the"bivariable mixed effect model"with the"midas"command.The true positive value,false positive value,false negative value,true negative value,and other information from the included literature were extracted.A literature quality assessment map was drawn to describe the overall quality of the included literature.A forest plot was used for heterogeneity analysis,and P<0.01 was considered to indicate statistical significance.A funnel plot was used to assess publication bias,and P<0.1 was considered to indicate statistical significance.The summary receiver operating characteristic(SROC)curve was used to calculate the area under the curve(AUC)to determine the diagnostic accuracy.If there was interstudy heterogeneity(I2>50%),meta-regression analysis and subgroup analysis were performed.analysis were performed.RESULTS Optical imaging involves two methods:Near-infrared(NIR)imaging and fluorescence imaging.A combination of optical imaging and ICG-guided SLN biopsy was useful for diagnosis.The positive likelihood ratio was 30.39(95%CI:0.92-1.00),the sensitivity was 0.95(95%CI:0.82-0.99),and the specificity was 1.00(95%CI:0.92-1.00).The negative likelihood ratio was 0.05(95%CI:0.01-0.20),the diagnostic odds ratio was 225.54(95%CI:88.81-572.77),and the SROC AUC was 1.00(95%CI:The crucial values were sensitivity=0.95(95%CI:0.82-0.99)and specificity=1.00(95%CI:0.92-1.00).The Deeks method revealed that the"diagnostic odds ratio"funnel plot of SLN biopsy for gastric cancer was significantly asymmetrical(P=0.01),suggesting significant publication bias.Further meta-subgroup analysis revealed that,compared with fluorescence imaging,NIR imaging had greater sensitivity(0.98 vs 0.73).Compared with optical imaging immediately after ICG injection,optical imaging after 20 minutes obtained greater sensitivity(0.98 vs 0.70).Compared with that of patients with an average SLN detection number<4,the sensitivity of patients with a SLN detection number≥4 was greater(0.96 vs 0.68).Compared with hematoxylin-eosin(HE)staining,immunohistochemical(+HE)staining showed greater sensitivity(0.99 vs 0.84).Compared with subserous injection of ICG,submucosal injection achieved greater sensitivity(0.98 vs 0.40).Compared with 5 g/L ICG,0.5 and 0.05 g/L ICG had greater sensitivity(0.98 vs 0.83),and cT1 stage had greater sensitivity(0.96 vs 0.72)than cT2 to cT3 clinical stage.Compared with that of patients≤26,the sensitivity of patients>26 was greater(0.96 vs 0.65).Compared with the literature published before 2010,the sensitivity of the literature published after 2010 was greater(0.97 vs 0.81),and the differences were statistically significant(all P<0.05).CONCLUSION For the diagnosis of stomach cancer,optical imaging in conjunction with ICG-guided SLN biopsy is a therapeut-ically viable approach,especially for early gastric cancer.The concentration of ICG used in the SLN biopsy of gastric cancer may be too high.Moreover,NIR imaging is better than fluorescence imaging and may obtain higher sensitivity.展开更多
The growing interest of the pharmaceutical industry in Near Infrared-Chemical Imaging (NIR-CI) is a result of its high usefulness for quality control analyses of drugs throughout their production process (particularly...The growing interest of the pharmaceutical industry in Near Infrared-Chemical Imaging (NIR-CI) is a result of its high usefulness for quality control analyses of drugs throughout their production process (particularly of its non-destructive nature and expeditious data acquisition).In this work,the concentration and distribution of the major and minor components of pharmaceutical tablets are determined and the spatial distribution from the internal and external sides has been obtained.In addition,the same NIR-CI allowed the coating thickness and its surface distribution to be quantified.Images were processed to extract the target data and calibration models constructed using the Partial Least Squares (PLS) algorithms.The concentrations of Active Pharmaceutical Ingredient (API) and excipients obtained for uncoated cores were essentially identical to the nominal values of the pharmaceutical formulation.But the predictive ability of the calibration models applied to the coated tablets decreased as the coating thickness increased.展开更多
The objective of this study was to explore the potential of near infrared hyperspectral imaging combined with statistical regression models and neural networks for nondestructive prediction of protein content of wheat...The objective of this study was to explore the potential of near infrared hyperspectral imaging combined with statistical regression models and neural networks for nondestructive prediction of protein content of wheat kernels.Seventy-nine samples from 11 breeds of wheat kernels were collected.The protein percentage of each sample measured by semimicro-Kjeldahl method was taken as the reference value.After comparing the prediction models of principal components regression(PCR)and partial least squares regression(PLSR)with various pretreatment methods,PLSR preprocessed by zero mean normalization(z score)function of MATLAB was found to obtain better prediction results than other regression models.Based on 10 latent variables of PLSR,the radial basis function(RBF)neural network was applied to improve the prediction,in which the coefficients of determination(R2)were greater than 0.92 for both the calibration set and validation set,while the corresponding RMSE values were 0.3496 and 0.4005,respectively.Therefore,hyperspectral imaging can provide a fast and non-destructive method for predicting the wheat kernels’protein content.展开更多
Near infrared microscopy imaging fers the opportunity to explore not only what lkinds ofchemical species are present at micro-scale level but also where the chemical species would bepr esent.By revealing the spectral ...Near infrared microscopy imaging fers the opportunity to explore not only what lkinds ofchemical species are present at micro-scale level but also where the chemical species would bepr esent.By revealing the spectral and spatial information,the technique can identify and localizeany interested component.This study investigates the feasibility of using Near infrared mi.croscopy imaging to detect melamine in soybean meal.The results showed that 6805 cm^(-1) is verysensitive for melamine but not for soybean meal,so can be used for univariate analysis,Singlewavelength image and peak integr ation image at 6805 cm^(-1) are simple and efective met hods todetect the melamine in soybean meal.Furthermore,Principal Component Analysis is applied todetect the melamine in soybean meal.展开更多
Near infrared (NIR) hyperspectral imaging measurement of sugar content in peach was introauced. NIR spectral images (650~1 000 nm, resolution: 2 nm) of peach samples were captured with developed hyperspectral im...Near infrared (NIR) hyperspectral imaging measurement of sugar content in peach was introauced. NIR spectral images (650~1 000 nm, resolution: 2 nm) of peach samples were captured with developed hyperspectral imaging setup. Partial least square (PLS) regression prediction model was developed to estimate the sugar content in peach; step-wise backward method was utilized to determine optimal wavelength subsets. Experimental results show that the calibration model with optimal wavelength subsets has a correlation coefficient of prediction of 0.97 and a standard error of prediction of 0.19, the prediction accuracy is higher than the calibration model applied over the whole wavelength, which proves that variable selection plays an important role in improving the prediction accuracy of PLS regression model.展开更多
Intelligent nanoplatform that combines multimodal imaging and therapeutic effects holds great promise for precise and efficient cancer therapy.Herein,folate-targeted polymersomes with stimuli-responsiveness were fabri...Intelligent nanoplatform that combines multimodal imaging and therapeutic effects holds great promise for precise and efficient cancer therapy.Herein,folate-targeted polymersomes with stimuli-responsiveness were fabricated and evaluated by near-infrared fluorescence(NIRF)and optical coherence tomography angiography(OCTA)dual-imaging for photo-chemo-antiangiogenic therapy against cancer.The folate-targeted polymersomes(FA-MIT-SIPS)not only integrated ammonium bicarbonate(ABC)and mitoxantrone(MIT)into their hydrophilic cavity but also encapsulated indocyanine green(ICG)and sorafenib(SOR)within their hydrophobic layer.NIRF imaging demonstrated that FA-MIT-SIPS effectively accumulated and retained in the tumors.Upon 808 nm laser irradiation,the ICG produced hyperthermia and reactive oxygen species(ROS)for efficient photothermal and photodynamic therapy.In addition,the decomposition of ABC in responsive to acidic tumor environment and ICG-induced hyperthermia accelerated drug release.The released MIT accumulated in nucleus to inhibit DNA synthesis,while the released SOR destructed tumor vascularization.Notably,OCTA imaging was applied to observe the tumor blood flow upon the combination therapy,demonstrating that FA-MIT-SIPS obviously decreased the vessels area density.Moreover,the synergistic photo-chemo-antiangiogenic therapy of FA-MIT-SIPS achieved excellent antitumor effect with 40%of the 4T1 tumor-bearing mice being completely cured without recurrence.The multifunctional polymersomes provide a promising dual-modal imaging-evaluated synergistic strategy for tumor therapy.展开更多
基金supported partially by the USDA-ARS Research Project#6054-44000-080-00D.
文摘Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.
基金supported from Beijing Municipal Government for the university a±liated with the Party Central Committee(Prof.Shi)National Natural Science Foundation of China(81303218)+1 种基金Doctoral Fund of Ministry of Education of China(20130013120006)Special Fund of Beijing University of Chinese Medicine(Manfei Xu).
文摘Near infrared chemical imaging(NIR-CI)combines conventional near infrared(NIR)spectros-copy with chemical imaging,thus provides spectral and spatial information simult aneously.It could be utilized to visualize the spatial distribution of the ingredients in a sample.The data acquired using NIR CI instrument are hyperspectral data cube(hypercube)containing thousands of spectra.Chemometric methodologies are necessary to transform spectral information into chemical information.Partial least squares(PLS)method was performed to extract chemical information of chlorpheniramine maleate in pharmaceutical formulations.A series of samples which consisted of different CPM concentrations(w/w)were compressed and hypercube data were measured.The spectra extracted from the hypercube were used to establish the PLS model of CPM.The results of the model were R^(2)_(val)0.981,RMSEC 0.384%,RMSECV 0.483%,RMSEP 0.631%,indicating that this model was reliable.
基金This work was supported by National Natural Science Foundation of China(Nos.61805287 and 62175262)The Open Fund of the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology,No.2021-skllmd-10)+1 种基金The Open Sharing Fund for Large-scale Instruments and Equipment of Central South University(CSUZC202218),Fundamental Research Funds for the Central South Universities(Nos.2020CX021,2020zzts387,and 2020zzts404)Key R&D plan of Hunan Province(No.2022SK2101).
文摘Near infrared(NIR)fluorescence imaging guided photodynamic therapy(PDT)is a technique which has been developed in many clinical trials due to its advantage of real-time optical monitoring,specific spatiotemporal selectivity,and minimal invasiveness.For this,photosensitizers with NIR fluorescence emission and high^(1)O_(2)generation quantum yield are highly desirable.Herein,we designed and synthesized a"donor-acceptor"(D-A)structured semiconductor polymer(SP),which was then wrapped with an amphiphilic compound(Pluronic■F127)to prepare water-soluble nanoparticles(F-SP NPs).The obtained F-SP NPs exhibit good water solubility,excellent particle size stability,strong absorbance at deep red region,and strong NIR fluorescent emission characteristics.The maximal mass extinction coe±cient and fluorescence quantum yield of these F-SPs were calculated to be 21.7 L/(g·cm)and 6.5%,respectively.Moreover,the^(1)O_(2)quantum yield of 89%for F-SP NPs has been achieved under 635 nm laser irradiation,which is higher than Methylene Blue,Ce6,and PpIX.The outstanding properties of these F-SP NPs originate from their unique D-A molecular characteristic.This work should help guide the design of novel semiconductor polymer for NIR fluorescent imaging guided PDT applications.
文摘BACKGROUND Gastric cancer is a common malignant tumor of the digestive system worldwide,and its early diagnosis is crucial to improve the survival rate of patients.Indocyanine green fluorescence imaging(ICG-FI),as a new imaging technology,has shown potential application prospects in oncology surgery.The meta-analysis to study the application value of ICG-FI in the diagnosis of gastric cancer sentinel lymph node biopsy is helpful to comprehensively evaluate the clinical effect of this technology and provide more reliable guidance for clinical practice.AIM To assess the diagnostic efficacy of optical imaging in conjunction with indocya-nine green(ICG)-guided sentinel lymph node(SLN)biopsy for gastric cancer.METHODS Electronic databases such as PubMed,Embase,Medline,Web of Science,and the Cochrane Library were searched for prospective diagnostic tests of optical imaging combined with ICG-guided SLN biopsy.Stata 12.0 software was used for analysis by combining the"bivariable mixed effect model"with the"midas"command.The true positive value,false positive value,false negative value,true negative value,and other information from the included literature were extracted.A literature quality assessment map was drawn to describe the overall quality of the included literature.A forest plot was used for heterogeneity analysis,and P<0.01 was considered to indicate statistical significance.A funnel plot was used to assess publication bias,and P<0.1 was considered to indicate statistical significance.The summary receiver operating characteristic(SROC)curve was used to calculate the area under the curve(AUC)to determine the diagnostic accuracy.If there was interstudy heterogeneity(I2>50%),meta-regression analysis and subgroup analysis were performed.analysis were performed.RESULTS Optical imaging involves two methods:Near-infrared(NIR)imaging and fluorescence imaging.A combination of optical imaging and ICG-guided SLN biopsy was useful for diagnosis.The positive likelihood ratio was 30.39(95%CI:0.92-1.00),the sensitivity was 0.95(95%CI:0.82-0.99),and the specificity was 1.00(95%CI:0.92-1.00).The negative likelihood ratio was 0.05(95%CI:0.01-0.20),the diagnostic odds ratio was 225.54(95%CI:88.81-572.77),and the SROC AUC was 1.00(95%CI:The crucial values were sensitivity=0.95(95%CI:0.82-0.99)and specificity=1.00(95%CI:0.92-1.00).The Deeks method revealed that the"diagnostic odds ratio"funnel plot of SLN biopsy for gastric cancer was significantly asymmetrical(P=0.01),suggesting significant publication bias.Further meta-subgroup analysis revealed that,compared with fluorescence imaging,NIR imaging had greater sensitivity(0.98 vs 0.73).Compared with optical imaging immediately after ICG injection,optical imaging after 20 minutes obtained greater sensitivity(0.98 vs 0.70).Compared with that of patients with an average SLN detection number<4,the sensitivity of patients with a SLN detection number≥4 was greater(0.96 vs 0.68).Compared with hematoxylin-eosin(HE)staining,immunohistochemical(+HE)staining showed greater sensitivity(0.99 vs 0.84).Compared with subserous injection of ICG,submucosal injection achieved greater sensitivity(0.98 vs 0.40).Compared with 5 g/L ICG,0.5 and 0.05 g/L ICG had greater sensitivity(0.98 vs 0.83),and cT1 stage had greater sensitivity(0.96 vs 0.72)than cT2 to cT3 clinical stage.Compared with that of patients≤26,the sensitivity of patients>26 was greater(0.96 vs 0.65).Compared with the literature published before 2010,the sensitivity of the literature published after 2010 was greater(0.97 vs 0.81),and the differences were statistically significant(all P<0.05).CONCLUSION For the diagnosis of stomach cancer,optical imaging in conjunction with ICG-guided SLN biopsy is a therapeut-ically viable approach,especially for early gastric cancer.The concentration of ICG used in the SLN biopsy of gastric cancer may be too high.Moreover,NIR imaging is better than fluorescence imaging and may obtain higher sensitivity.
基金Spain’s MICINN for funding this research within the framework of Project CTQ2009-08312
文摘The growing interest of the pharmaceutical industry in Near Infrared-Chemical Imaging (NIR-CI) is a result of its high usefulness for quality control analyses of drugs throughout their production process (particularly of its non-destructive nature and expeditious data acquisition).In this work,the concentration and distribution of the major and minor components of pharmaceutical tablets are determined and the spatial distribution from the internal and external sides has been obtained.In addition,the same NIR-CI allowed the coating thickness and its surface distribution to be quantified.Images were processed to extract the target data and calibration models constructed using the Partial Least Squares (PLS) algorithms.The concentrations of Active Pharmaceutical Ingredient (API) and excipients obtained for uncoated cores were essentially identical to the nominal values of the pharmaceutical formulation.But the predictive ability of the calibration models applied to the coated tablets decreased as the coating thickness increased.
基金National Natural Science Foundation of China(31501228,61473235,41301450)Natural Science Foundation of Shaanxi Province(2015JM3110)+3 种基金Fundamental Research Funds for the Central Universities(Z109021561,QN2013062,2452015381)Scientific Research Foundation for Doctor,Northwest A&F University(2012BSJJ027)Comprehensive Innovation Technology Project of Shaanxi Province(2015KTZDNY01-06)Special Talent Fund of Shaanxi Province(Z111021303).
文摘The objective of this study was to explore the potential of near infrared hyperspectral imaging combined with statistical regression models and neural networks for nondestructive prediction of protein content of wheat kernels.Seventy-nine samples from 11 breeds of wheat kernels were collected.The protein percentage of each sample measured by semimicro-Kjeldahl method was taken as the reference value.After comparing the prediction models of principal components regression(PCR)and partial least squares regression(PLSR)with various pretreatment methods,PLSR preprocessed by zero mean normalization(z score)function of MATLAB was found to obtain better prediction results than other regression models.Based on 10 latent variables of PLSR,the radial basis function(RBF)neural network was applied to improve the prediction,in which the coefficients of determination(R2)were greater than 0.92 for both the calibration set and validation set,while the corresponding RMSE values were 0.3496 and 0.4005,respectively.Therefore,hyperspectral imaging can provide a fast and non-destructive method for predicting the wheat kernels’protein content.
基金funded by the European Commissionunder the Seventh Framework Programme(Qualityand safety of feeds and food for Europe(QSAFFE),Contract No.FP7-KBBE-2010-4)Program forNew Century Excellent Talents in University(NCET-10-0785).
文摘Near infrared microscopy imaging fers the opportunity to explore not only what lkinds ofchemical species are present at micro-scale level but also where the chemical species would bepr esent.By revealing the spectral and spatial information,the technique can identify and localizeany interested component.This study investigates the feasibility of using Near infrared mi.croscopy imaging to detect melamine in soybean meal.The results showed that 6805 cm^(-1) is verysensitive for melamine but not for soybean meal,so can be used for univariate analysis,Singlewavelength image and peak integr ation image at 6805 cm^(-1) are simple and efective met hods todetect the melamine in soybean meal.Furthermore,Principal Component Analysis is applied todetect the melamine in soybean meal.
文摘Near infrared (NIR) hyperspectral imaging measurement of sugar content in peach was introauced. NIR spectral images (650~1 000 nm, resolution: 2 nm) of peach samples were captured with developed hyperspectral imaging setup. Partial least square (PLS) regression prediction model was developed to estimate the sugar content in peach; step-wise backward method was utilized to determine optimal wavelength subsets. Experimental results show that the calibration model with optimal wavelength subsets has a correlation coefficient of prediction of 0.97 and a standard error of prediction of 0.19, the prediction accuracy is higher than the calibration model applied over the whole wavelength, which proves that variable selection plays an important role in improving the prediction accuracy of PLS regression model.
基金supported by the National Natural Science Foundation of China(Nos.82072059 and 82172090)the Fundamental Research Funds for the Central Universities(No.2019PT320028)+2 种基金Tianjin Municipal Natural Science Foundation(No.20JCYBJC00030)CAMS Initiative for Innovative Medicine(No.2021-I2M-1-058)Science and Technology Planning Project of Tianjin(No.18ZXSGSY00050).
文摘Intelligent nanoplatform that combines multimodal imaging and therapeutic effects holds great promise for precise and efficient cancer therapy.Herein,folate-targeted polymersomes with stimuli-responsiveness were fabricated and evaluated by near-infrared fluorescence(NIRF)and optical coherence tomography angiography(OCTA)dual-imaging for photo-chemo-antiangiogenic therapy against cancer.The folate-targeted polymersomes(FA-MIT-SIPS)not only integrated ammonium bicarbonate(ABC)and mitoxantrone(MIT)into their hydrophilic cavity but also encapsulated indocyanine green(ICG)and sorafenib(SOR)within their hydrophobic layer.NIRF imaging demonstrated that FA-MIT-SIPS effectively accumulated and retained in the tumors.Upon 808 nm laser irradiation,the ICG produced hyperthermia and reactive oxygen species(ROS)for efficient photothermal and photodynamic therapy.In addition,the decomposition of ABC in responsive to acidic tumor environment and ICG-induced hyperthermia accelerated drug release.The released MIT accumulated in nucleus to inhibit DNA synthesis,while the released SOR destructed tumor vascularization.Notably,OCTA imaging was applied to observe the tumor blood flow upon the combination therapy,demonstrating that FA-MIT-SIPS obviously decreased the vessels area density.Moreover,the synergistic photo-chemo-antiangiogenic therapy of FA-MIT-SIPS achieved excellent antitumor effect with 40%of the 4T1 tumor-bearing mice being completely cured without recurrence.The multifunctional polymersomes provide a promising dual-modal imaging-evaluated synergistic strategy for tumor therapy.