An experimental study on infrared radiation from the hot jet by means of model test is presented. The infrared detection system of the universal infrared instruments. the testing method and experimental results of inf...An experimental study on infrared radiation from the hot jet by means of model test is presented. The infrared detection system of the universal infrared instruments. the testing method and experimental results of infrared radiation from the hot jet are introduced. The space distribution of infaed radiant energy. the spectrum of infrared radiation from the hot jet. the distribution of the radiant energy of the hot jet against the wavebands and the characteristic difference of the hot jet radiaton between the 2-D jet tube and the circular jet tube are obtained. It is indicated that the testing system and the method are valid and the results are in accord with the theoretical analysis.展开更多
Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mod...Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mode in the wavelength range of 800-2500 nm. Wines (n=90) were randomly split into two sets, calibration set (n=54) and validation set (n=36). Discriminant analysis models were developed using BP neural network and discriminant partial least-squares discriminant analysis (PLS-DA). The prediction performance of calibration models in different wavelength range was also investigated. BP neural network models and PLS-DA models correctly classified 100% of the wines in calibration set. When used to predict wines in validation set, BP neural network models correctly classified 100%, 81.8%, and 90.9% of the wines from Changli, Huailai, and Yantai respectively, and PLS-DA models correctly classified 100% of all samples. The results demonstrated that NIRS could be used to discriminate Chinese grape wines as a rapid and reliable method.展开更多
Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the ...Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the time at the 95% confidence level (p = 0.05 significance level). In the present study, cotton and silk had a 62% and 24% chance, respectively, of being classified with their own group and also with rayon. SIMCA correctly identified a counterfeit “silk” sample as polyester. When coupled with diffuse NIR reflectance spectroscopy and a large sample library, SIMCA shows considerable promise as a quick, non-destructive, multivariate method for fiber identification. A major advantage is simplicity. No sample pretreatment of any kind was required, and no adjust-ments were made for fiber origin, manufacturing process residues, topical finishes, weave pattern, or dye content. Increasing the sample library should make the models more robust and improve identification rates over those reported in this paper.展开更多
以四种品牌152组食用醋样品为研究对象,采用漫反射与透射两种近红外光谱采集模式分别进行光谱数据采集,并以此建立了食用醋品牌溯源模型,重点考察光谱采集模式、光谱预处理方法等对溯源模型精度的影响。结果表明,选取114组样品为训练集...以四种品牌152组食用醋样品为研究对象,采用漫反射与透射两种近红外光谱采集模式分别进行光谱数据采集,并以此建立了食用醋品牌溯源模型,重点考察光谱采集模式、光谱预处理方法等对溯源模型精度的影响。结果表明,选取114组样品为训练集,原始光谱数据经过多元散射校正、二阶求导预处理后,采用偏最小二乘判别分析法(PLS1-DA)建立的食用醋NIRS品牌溯源模型,对38组测试集样品进行预测,透射光谱模型的决定系数(R2)、校准均方根误差(root-mean-square error of calibration,RMSEC)、预测均方根误差(root-mean-square error of prediction,RMSEP)分别为0.92,0.113,0.127,正确识别率为76.32%;漫反射光谱模型R2,RMSEC,RMSEP分别为0.97,0.102,0.119,正确识别率为86.84%。由此说明,近红外光谱结合PLS1-DA可以用来建立食用醋品牌溯源模型,且漫反射光谱模型预测效果更好。展开更多
文摘An experimental study on infrared radiation from the hot jet by means of model test is presented. The infrared detection system of the universal infrared instruments. the testing method and experimental results of infrared radiation from the hot jet are introduced. The space distribution of infaed radiant energy. the spectrum of infrared radiation from the hot jet. the distribution of the radiant energy of the hot jet against the wavebands and the characteristic difference of the hot jet radiaton between the 2-D jet tube and the circular jet tube are obtained. It is indicated that the testing system and the method are valid and the results are in accord with the theoretical analysis.
文摘Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mode in the wavelength range of 800-2500 nm. Wines (n=90) were randomly split into two sets, calibration set (n=54) and validation set (n=36). Discriminant analysis models were developed using BP neural network and discriminant partial least-squares discriminant analysis (PLS-DA). The prediction performance of calibration models in different wavelength range was also investigated. BP neural network models and PLS-DA models correctly classified 100% of the wines in calibration set. When used to predict wines in validation set, BP neural network models correctly classified 100%, 81.8%, and 90.9% of the wines from Changli, Huailai, and Yantai respectively, and PLS-DA models correctly classified 100% of all samples. The results demonstrated that NIRS could be used to discriminate Chinese grape wines as a rapid and reliable method.
文摘Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the time at the 95% confidence level (p = 0.05 significance level). In the present study, cotton and silk had a 62% and 24% chance, respectively, of being classified with their own group and also with rayon. SIMCA correctly identified a counterfeit “silk” sample as polyester. When coupled with diffuse NIR reflectance spectroscopy and a large sample library, SIMCA shows considerable promise as a quick, non-destructive, multivariate method for fiber identification. A major advantage is simplicity. No sample pretreatment of any kind was required, and no adjust-ments were made for fiber origin, manufacturing process residues, topical finishes, weave pattern, or dye content. Increasing the sample library should make the models more robust and improve identification rates over those reported in this paper.
文摘以四种品牌152组食用醋样品为研究对象,采用漫反射与透射两种近红外光谱采集模式分别进行光谱数据采集,并以此建立了食用醋品牌溯源模型,重点考察光谱采集模式、光谱预处理方法等对溯源模型精度的影响。结果表明,选取114组样品为训练集,原始光谱数据经过多元散射校正、二阶求导预处理后,采用偏最小二乘判别分析法(PLS1-DA)建立的食用醋NIRS品牌溯源模型,对38组测试集样品进行预测,透射光谱模型的决定系数(R2)、校准均方根误差(root-mean-square error of calibration,RMSEC)、预测均方根误差(root-mean-square error of prediction,RMSEP)分别为0.92,0.113,0.127,正确识别率为76.32%;漫反射光谱模型R2,RMSEC,RMSEP分别为0.97,0.102,0.119,正确识别率为86.84%。由此说明,近红外光谱结合PLS1-DA可以用来建立食用醋品牌溯源模型,且漫反射光谱模型预测效果更好。