In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calcula...In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calculations. Their scanning tunneling microscopic images and work functions are simulated and compared with experimental results. In this way, the hex-H3' and rect-T1 models are identified as the experimental configurations for the hexagonal and rectangular types, respectively. The structural evolution mechanism of the In/Si(lll) surface with indium coverage around 1.0 monolayer is discussed. The 4×1 and -√7× √3 phases are suggested to have two different types of evolution mechanisms, consistent with experimental results.展开更多
We extracted 374 pieces of records of frost date from historical documents. Using these records, we reconstructed winter half-year (October to next April) temperature series, with a resolution of 5-year, for the North...We extracted 374 pieces of records of frost date from historical documents. Using these records, we reconstructed winter half-year (October to next April) temperature series, with a resolution of 5-year, for the North China Plain during 1651-2010. The results show that the temperature changes in the North China Plain were divided into four phases. With the reference period of 1951-1980, two cold phases, 1651-1700 and 1781-1900, have cold anomaly of 0.83°C and 0.60°C respectively. However, between the two cold phases, 1701-1780 was a relative warm phase with the cold anomaly of 0.36°C referring to the mean of 1951-1980. After the 1900, the climate came into a warm phase. The mean temperature of 1901-2010 was 0.11°C higher than the mean of 1951-1980. During 1651-2010, the 1996-2000 is the warmest 5-year with the warm anomaly of 1.25°C than that of the reference period of 1951-1980.展开更多
This paper introduces decimated filter banks for the one-dimensional empirical mode decomposition (1D-EMD). These filter banks can provide perfect reconstruction and allow for an arbitrary tree structure. Since the ...This paper introduces decimated filter banks for the one-dimensional empirical mode decomposition (1D-EMD). These filter banks can provide perfect reconstruction and allow for an arbitrary tree structure. Since the EMD is a data driven decomposition, it is a very useful analysis instrument for non-stationary and non-linear signals. However, the traditional 1D-EMD has the disadvantage of expanding the data. Large data sets can be generated as the amount of data to be stored increases with every decomposition level. The 1D-EMD can be thought as having the structure of a single dyadic filter. However, a methodology to incorporate the decomposition into any arbitrary tree structure has not been reported yet in the literature. This paper shows how to extend the 1D-EMD into any arbitrary tree structure while maintaining the perfect reconstruction property. Furthermore, the technique allows for downsampling the decomposed signals. This paper, thus, presents a method to minimize the data-expansion drawback of the 1D-EMD by using decimation and merging the EMD coefficients. The proposed algorithm is applicable for any arbitrary tree structure including a full binary tree structure.展开更多
We propose the quadratic constrained formulas for the design of linear phase cosine modulated paraunitary filter banks given in references . Using these formulae, we can, directly, optimize the prototype filter coeff...We propose the quadratic constrained formulas for the design of linear phase cosine modulated paraunitary filter banks given in references . Using these formulae, we can, directly, optimize the prototype filter coefficients in a quadratic form. A design example is also given to demonstrate these formulae in this paper.展开更多
Cave air CO_2 is a vital part of the cave environment. Most studies about cave air CO_2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO_2 vari...Cave air CO_2 is a vital part of the cave environment. Most studies about cave air CO_2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO_2 variations and drip water hydrochemistry in underground stream–developed caves. To study the relationship of underground stream, drip water, and cave air CO_2, monthly and daily monitoring of air CO_2 and of underground stream and drip water was performed in Xueyu Cave from 2012 to 2013.The results revealed that there was marked seasonal variation of air CO_2 and stream hydrochemistry in the cave. Daily variations of cave air CO_2, and of stream and drip water hydrochemistry, were notable during continuous monitoring.A dilution effect was observed by analyzing hydrochemical variations in underground stream and drip water after rainfall. High cave air CO_2 along with low p H and low δ^(13)C DIC in stream and drip water indicated that air CO_2 was one of the dominant factors controlling stream and drip water hydrochemistry on a daily scale. On a seasonal scale, stream flows may promote increased cave air CO_2 in summer; in turn, the higher cave air CO_2 could inhibit degassing of drip water and make calcite δ^(13)C more negative. Variation of calcite δ^(13)C(precipitated from drip water) was in reverse of monthly temperature, soil CO_2, and cave air CO_2. Therefore,calcite δ^(13)C in Xueyu Cave could be used to determine monthly changes outside the cave. However, considering the different precipitation rate of sediment in different seasons,it was difficult to use stalagmites to reconstruct environmental change on a seasonal scale.展开更多
This paper proposes a method to design multichannel cosine modulated filter bank for image compression using multiobjective optimization technique. The design problem is a combination of stopband residual energy, leas...This paper proposes a method to design multichannel cosine modulated filter bank for image compression using multiobjective optimization technique. The design problem is a combination of stopband residual energy, least square error of the overall transfer function of the filter bank, coding gain with dc leakage free condition as constraint. The proposed algorithm uses Non-dominated Sorting Genetic Algorithm (NSGA) to minimize the mutually contradictory objective function by minimizing filter tap weights of prototype filter. The algorithm solves this problem by searching solutions that achieve the best compromise between the different objectives criteria. The performance of this algorithm is evaluated in terms of coding gain and peak signal to noise ratio (PSNR). Simulation results on different images are included to illustrate the effectiveness of the proposed algorithm for image compression application.展开更多
Traditional designs for non-uniform filter bank (NUFB) are usually complex;involve complicated nonlinear optimization with a large number of parameters and lack of linear phase ([LP) property. In this paper, we descri...Traditional designs for non-uniform filter bank (NUFB) are usually complex;involve complicated nonlinear optimization with a large number of parameters and lack of linear phase ([LP) property. In this paper, we describe a simple design method for multirate near perfect reconstruction (NPR) cosine modulated filter banks with non-uniform frequency spacing and linear phase property that involves optimization of only single parameter. It is derived from the uniform cosine modulated filter bank (CMFB) by merging some relevant band pass filters. The design procedure and the structure of the uniform CMFB are mostly preserved in the non-uniform implementation. Compared to other design methods our method provides very good design and converges very rapidly but the method is applicable, only if the upper band edge frequency of each non-uniform filter is an integral multiple of the bandwidth of the corresponding band. The design examples are presented to show the superiority of the proposed method over existing one.展开更多
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20603032, No.20733004, No.21121003, No.91021004, No.20933006), the National Key Basic Research Program (No.2011CB921400), the Foundation of National Excellent Doctoral Dissertation of China (No.200736), the Fundamental Research Funds for the Central Universities (No.WK2340000006 and No.WK2060140005), and the Shanghai Supercompurer Center, the USTC-HP HPC Project, and the SCCAS.
文摘In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calculations. Their scanning tunneling microscopic images and work functions are simulated and compared with experimental results. In this way, the hex-H3' and rect-T1 models are identified as the experimental configurations for the hexagonal and rectangular types, respectively. The structural evolution mechanism of the In/Si(lll) surface with indium coverage around 1.0 monolayer is discussed. The 4×1 and -√7× √3 phases are suggested to have two different types of evolution mechanisms, consistent with experimental results.
文摘We extracted 374 pieces of records of frost date from historical documents. Using these records, we reconstructed winter half-year (October to next April) temperature series, with a resolution of 5-year, for the North China Plain during 1651-2010. The results show that the temperature changes in the North China Plain were divided into four phases. With the reference period of 1951-1980, two cold phases, 1651-1700 and 1781-1900, have cold anomaly of 0.83°C and 0.60°C respectively. However, between the two cold phases, 1701-1780 was a relative warm phase with the cold anomaly of 0.36°C referring to the mean of 1951-1980. After the 1900, the climate came into a warm phase. The mean temperature of 1901-2010 was 0.11°C higher than the mean of 1951-1980. During 1651-2010, the 1996-2000 is the warmest 5-year with the warm anomaly of 1.25°C than that of the reference period of 1951-1980.
基金supported in part by an internal grant of Eastern Washington University
文摘This paper introduces decimated filter banks for the one-dimensional empirical mode decomposition (1D-EMD). These filter banks can provide perfect reconstruction and allow for an arbitrary tree structure. Since the EMD is a data driven decomposition, it is a very useful analysis instrument for non-stationary and non-linear signals. However, the traditional 1D-EMD has the disadvantage of expanding the data. Large data sets can be generated as the amount of data to be stored increases with every decomposition level. The 1D-EMD can be thought as having the structure of a single dyadic filter. However, a methodology to incorporate the decomposition into any arbitrary tree structure has not been reported yet in the literature. This paper shows how to extend the 1D-EMD into any arbitrary tree structure while maintaining the perfect reconstruction property. Furthermore, the technique allows for downsampling the decomposed signals. This paper, thus, presents a method to minimize the data-expansion drawback of the 1D-EMD by using decimation and merging the EMD coefficients. The proposed algorithm is applicable for any arbitrary tree structure including a full binary tree structure.
文摘We propose the quadratic constrained formulas for the design of linear phase cosine modulated paraunitary filter banks given in references . Using these formulae, we can, directly, optimize the prototype filter coefficients in a quadratic form. A design example is also given to demonstrate these formulae in this paper.
基金supported by the National Natural Science Foundation of China (NO.41072192)Academician Foundation of Chongqing Science & Technology Commission (CSTC,2010BC7004CSTC,2013JCYIYS20001)
文摘Cave air CO_2 is a vital part of the cave environment. Most studies about cave air CO_2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO_2 variations and drip water hydrochemistry in underground stream–developed caves. To study the relationship of underground stream, drip water, and cave air CO_2, monthly and daily monitoring of air CO_2 and of underground stream and drip water was performed in Xueyu Cave from 2012 to 2013.The results revealed that there was marked seasonal variation of air CO_2 and stream hydrochemistry in the cave. Daily variations of cave air CO_2, and of stream and drip water hydrochemistry, were notable during continuous monitoring.A dilution effect was observed by analyzing hydrochemical variations in underground stream and drip water after rainfall. High cave air CO_2 along with low p H and low δ^(13)C DIC in stream and drip water indicated that air CO_2 was one of the dominant factors controlling stream and drip water hydrochemistry on a daily scale. On a seasonal scale, stream flows may promote increased cave air CO_2 in summer; in turn, the higher cave air CO_2 could inhibit degassing of drip water and make calcite δ^(13)C more negative. Variation of calcite δ^(13)C(precipitated from drip water) was in reverse of monthly temperature, soil CO_2, and cave air CO_2. Therefore,calcite δ^(13)C in Xueyu Cave could be used to determine monthly changes outside the cave. However, considering the different precipitation rate of sediment in different seasons,it was difficult to use stalagmites to reconstruct environmental change on a seasonal scale.
文摘This paper proposes a method to design multichannel cosine modulated filter bank for image compression using multiobjective optimization technique. The design problem is a combination of stopband residual energy, least square error of the overall transfer function of the filter bank, coding gain with dc leakage free condition as constraint. The proposed algorithm uses Non-dominated Sorting Genetic Algorithm (NSGA) to minimize the mutually contradictory objective function by minimizing filter tap weights of prototype filter. The algorithm solves this problem by searching solutions that achieve the best compromise between the different objectives criteria. The performance of this algorithm is evaluated in terms of coding gain and peak signal to noise ratio (PSNR). Simulation results on different images are included to illustrate the effectiveness of the proposed algorithm for image compression application.
文摘Traditional designs for non-uniform filter bank (NUFB) are usually complex;involve complicated nonlinear optimization with a large number of parameters and lack of linear phase ([LP) property. In this paper, we describe a simple design method for multirate near perfect reconstruction (NPR) cosine modulated filter banks with non-uniform frequency spacing and linear phase property that involves optimization of only single parameter. It is derived from the uniform cosine modulated filter bank (CMFB) by merging some relevant band pass filters. The design procedure and the structure of the uniform CMFB are mostly preserved in the non-uniform implementation. Compared to other design methods our method provides very good design and converges very rapidly but the method is applicable, only if the upper band edge frequency of each non-uniform filter is an integral multiple of the bandwidth of the corresponding band. The design examples are presented to show the superiority of the proposed method over existing one.