This paper presents a focused study on using different methods to enhance the ultimate capacity of flexural behavior in RC slabs. Four RC specimens were casted with common compressive strength and reinforced with stee...This paper presents a focused study on using different methods to enhance the ultimate capacity of flexural behavior in RC slabs. Four RC specimens were casted with common compressive strength and reinforced with steel mesh. Specimens were strengthened with different methods such as usage of GFRP sheets, carbon fibers laminate strips and near surface mounted steel rebars. All specimens were subjected to two-point loading setup. Load was increased from zero to failure load. First crack was recorded and crack pattern was observed. The behavior of strengthened specimens was compared to that of the control specimen to judge the efficiency of the used techniques. Test results showed that the used techniques were effective in enhancing the behavior of the strengthened slabs by noteworthy values.展开更多
文摘This paper presents a focused study on using different methods to enhance the ultimate capacity of flexural behavior in RC slabs. Four RC specimens were casted with common compressive strength and reinforced with steel mesh. Specimens were strengthened with different methods such as usage of GFRP sheets, carbon fibers laminate strips and near surface mounted steel rebars. All specimens were subjected to two-point loading setup. Load was increased from zero to failure load. First crack was recorded and crack pattern was observed. The behavior of strengthened specimens was compared to that of the control specimen to judge the efficiency of the used techniques. Test results showed that the used techniques were effective in enhancing the behavior of the strengthened slabs by noteworthy values.