期刊文献+
共找到4,656篇文章
< 1 2 233 >
每页显示 20 50 100
Effects of confining pressure and pore pressure on multipole borehole acoustic field in fluid-saturated porous media
1
作者 赵志强 刘金霞 +1 位作者 刘建宇 崔志文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期468-476,共9页
In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated por... In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media. 展开更多
关键词 confining pressure pore pressure fluid-saturated porous media multipole borehole acoustic field
下载PDF
Analysis of the Flow Field and Impact Force in High-Pressure Water Descaling
2
作者 Yue Cui Liyuan Wang +2 位作者 Jian Wu Haisheng Liu Di Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第1期165-177,共13页
This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by... This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications. 展开更多
关键词 High pressure water descaling flow field analysis FSI target distance strike range
下载PDF
Research on Multi-Wave Pore Pressure Prediction Method Based on Three Field Velocity Fusion
3
作者 Junlin Zhang Huan Wan +2 位作者 Yu Zhang Yumei He Linlin Dan 《Journal of Geoscience and Environment Protection》 2024年第6期269-278,共10页
The optimization of velocity field is the core issue in reservoir seismic pressure prediction. For a long time, the seismic processing velocity analysis method has been used in the establishment of pressure prediction... The optimization of velocity field is the core issue in reservoir seismic pressure prediction. For a long time, the seismic processing velocity analysis method has been used in the establishment of pressure prediction velocity field, which has a long research period and low resolution and restricts the accuracy of seismic pressure prediction;This paper proposed for the first time the use of machine learning algorithms, based on the feasibility analysis of wellbore logging pressure prediction, to integrate the CVI velocity inversion field, velocity sensitive post stack attribute field, and AVO P-wave and S-wave velocity reflectivity to obtain high-precision seismic P and S wave velocities. On this basis, high-resolution formation pore pressure and other parameters prediction based on multi waves is carried out. The pressure prediction accuracy is improved by more than 50% compared to the P-wave resolution of pore pressure prediction using only root mean square velocity. Practice has proven that the research method has certain reference significance for reservoir pore pressure prediction. 展开更多
关键词 Velocity field RESOLUTION Machine Learning AVO Inversion Pore pressure
下载PDF
Numerical simulation of flow field characteristics and the improvement of pressure oscillation of rotating detonation engine
4
作者 Xin-pei Han Quan Zheng +6 位作者 Bao-xing Li Qiang Xiao Han Xu Fang Wang Hao-long Meng Wen-kang Feng Chun-sheng Weng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期191-202,共12页
Due to the inherent working mode of rotating detonation engine(RDE),the detonation flow field has the characteristics of pressure oscillation and axial kinetic energy loss,which makes it difficult to design nozzle and... Due to the inherent working mode of rotating detonation engine(RDE),the detonation flow field has the characteristics of pressure oscillation and axial kinetic energy loss,which makes it difficult to design nozzle and improve propulsion performance.Therefore,in order to improve the characteristics of detonation flow field,the three-dimensional numerical simulation of annular chamber and hollow chamber is carried out with premixed hydrogen/air as fuel in this paper,and then tries to combine the two chambers to weaken the oscillation characteristics of detonation flow field through the interaction of detonation flow field,which is a new method to regulate the detonation flow field.The results show that there are four states of velocity vectors at the outlet of annular chamber and hollow chamber,which makes RDE be affected by rolling moment and results in the loss of axial kinetic energy.In the external flow field of combined chamber,the phenomenon of cyclic reflection of expansion wave and compression wave on the free boundary is observed,which results in Mach disk structure.Moreover,the pressure monitoring points are set at the external flow field.The pressure signal shows that the high-frequency pressure oscillation at the external flow field of the combined chamber has been greatly weakened.Compared to the annular chamber,the relative standard deviation(RSD) has been reduced from 14.6% to5.6%.The results thus demonstrate that this method is feasible to adjust the pressure oscillation characteristics of the detonation flow field,and is of great significance to promote the potential of RDE and nozzle design. 展开更多
关键词 Detonation flow field Combined chamber pressure oscillation Velocity vector
下载PDF
Optimization of the Algorithm for Increasing Injection Rate in Water Injection Wells for Pressure Optimization in P Oilfield
5
作者 Lingyu Li 《World Journal of Engineering and Technology》 2023年第2期246-251,共6页
In today’s society, with the continuous growth of energy demand, Bohai Oilfield, as an important offshore oil resource base in China, is facing increasingly severe challenges while contributing to national energy sec... In today’s society, with the continuous growth of energy demand, Bohai Oilfield, as an important offshore oil resource base in China, is facing increasingly severe challenges while contributing to national energy security. In order to improve the quality of water injection in the oilfield and gradually achieve efficient and stable production, Bohai Oilfield has launched a water injection well pressure optimization project, focusing on improving the efficiency and quality of water injection in the water injection wells, in order to achieve the optimal water injection plan. In practical work, P Oilfield continues to promote the development of water injection well pressure optimization projects, emphasizing practical exploration and continuous optimization of work plans. However, during the project implementation process, there were some problems, one of which was that the statistics of cumulative injection volume were not scientific enough, resulting in a more comprehensive and accurate presentation of the actual results of pressure optimization work. In the context of continuous improvement work, after careful analysis and research, P Oilfield has decided to optimize the cumulative injection rate algorithm to guide the oilfield’s water injection work in a more refined way, ensuring sufficient and good water injection, and enhancing the oilfield’s production efficiency and comprehensive competitiveness. 展开更多
关键词 Offshore Oil fields Water Injection Wells pressure Optimization Water Injection Volume Calculation Method
下载PDF
Evaluation and prediction of earth pressure balance shield performance in complex rock strata:A case study in Dalian,China 被引量:1
6
作者 Xiang Shen Dajun Yuan +2 位作者 Xing-Tao Lin Xiangsheng Chen Yuansheng Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1491-1505,共15页
This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Da... This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Dalian,China.Due to the large error between the initial geological exploration data and real strata,the project construction is extremely difficult.In view of the current situation regarding the project,a quantitative method for evaluating the tunneling efficiency was proposed using cutterhead rotation(R),advance speed(S),total thrust(F)and torque(T).A total of 80 datasets with three input parameters and one output variable(F or T)were collected from this project,and a prediction framework based gray system model was established.Based on the prediction model,five prediction schemes were set up.Through error analysis,the optimal prediction scheme was obtained from the five schemes.The parametric investigation performed indicates that the relationships between F and the three input variables in the gray system model harmonize with the theoretical explanation.The case shows that the shield tunneling performance and efficiency are improved by the tunneling parameter prediction model based on the gray system model. 展开更多
关键词 Evaluation of earth pressure balance shield PERFORMANCE Gray system model Metro construction Rock strata field data prediction
下载PDF
Characteristics of Abnormal Pressure Systems and Their Responses of Fluid in Huatugou Oil Field,Qaidam Basin 被引量:3
7
作者 CHEN Xiaozhi XU Hao +4 位作者 TANG Dazhen ZHANG Junfeng HU Xiaolan TAO Shu CAI Yidong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第5期939-950,共12页
Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are... Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are discussed. The correlation between the pressure systems and hydrocarbon accumulation is addressed by analyzing the corresponding fluid characteristics. The results show that the Huatugou oil field as a whole has low formation pressure and low fluid energy; therefore, the hydrocarbons are hard to migrate, which facilitates the forming of primary reservoirs. The study reservoirs, located at the Xiayoushashan Formation (N1/2) and the Shangganchaigou Formation (N1) are relatively shallow and have medium porosity and low permeability. They are abnormal low-pressure reservoirs with an average formation pressure coefficient of 0.61 and 0.72 respectively. According to the pressure coefficient and geothermal anomaly, the N1 and N1/2 Formations belong to two independent temperature-pressure systems, and the former has slightly higher energy. The low-pressure compartments consist of a distal bar as the main body, prodelta mud as the top boundary, and shore and shallow lake mud or algal mound as the bottom boundary. They are vertically overlapped and horizontally paralleled. The formation water is abundant in the Cl^- ion and can be categorized as CaCl2 type with high safinity, which indicates that the abnormal low-pressure compartments are in good sealing condition and beneficial for oil and gas accumulation and preservation. 展开更多
关键词 abnormal pressure system low-pressure compartment fluid characteristics Huatugou oil field Qaidam basin
下载PDF
Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion 被引量:2
8
作者 张政 车学科 +5 位作者 聂万胜 李金龙 郑体凯 李亮 陈庆亚 郑直 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第1期41-46,共6页
Flow fields induced by a surface dielectric barrier discharge actuator at low pressure of 7 kPa are measured by particle image velocimetry. The distribution of local vortices in the flow field is revealed by the Q cri... Flow fields induced by a surface dielectric barrier discharge actuator at low pressure of 7 kPa are measured by particle image velocimetry. The distribution of local vortices in the flow field is revealed by the Q criterion. The reason for the generation of vortices is analyzed and the influence of pulse frequency and duty cycle on vortices is studied. The results show that the Q criterion can reveal the small-scale vortices, which cannot be indicated by the streamline. The direction transition zone where the induced jet moves from the vertical to the tangential and the shear layer between the jet and stationary air are prone to the generation of strong vortices. The influence of pulse frequency on vortices is not obvious, but the variation of duty cycle can significantly affect the strength and distribution of vortices. 展开更多
关键词 low pressure SDBD induced field Q criterion VORTEX
下载PDF
Effects of a carbon convection field on large diamond growth under high-pressure high-temperature conditions 被引量:2
9
作者 胡美华 李尚升 +4 位作者 马红安 宿太超 李小雷 胡强 贾晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期525-530,共6页
Large diamond crystals were successfully synthesized by a FeNi C system using the temperature gradient method under high-pressure high-temperature conditions. The assembly of the growth cell was improved and the growt... Large diamond crystals were successfully synthesized by a FeNi C system using the temperature gradient method under high-pressure high-temperature conditions. The assembly of the growth cell was improved and the growth process of diamond was investigated. Effects of the symmetry of the carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of the seed crystal in the melted catalyst/solvent. The results indicate that the morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature. Moreover, the finite element method was applied to analyze the carbon convection mode of the melted catalyst/solvent around the diamond crystal. This work is helpful for understanding the growth mechanism of diamond. 展开更多
关键词 DIAMOND high pressure and high temperature temperature gradient method carbonconvection field
下载PDF
Lateral abutment pressure distribution and evolution in wide pillars under the first mining effect
10
作者 Zhen Zhang Zhen Li +4 位作者 Gang Xu Xiaojin Gao Qianjin Liu Zhengjie Li Jiachen Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期309-322,共14页
The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect o... The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines. 展开更多
关键词 Wide pillar Lateral abutment pressure Pillar stress First mining effect field monitoring
下载PDF
A two-dimensional air streamer discharge modified model based on artificial stability term under non-uniform electric field at low temperature and sub-atmospheric pressure 被引量:3
11
作者 赵志航 魏新劳 +3 位作者 宋爽 崔林 杨凯伦 张中华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第7期85-97,共13页
In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed... In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 1013 cm-3, the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research. 展开更多
关键词 low temperature and sub atmospheric pressure artificial stability term reduced electric field pre-ionization simulation system
下载PDF
THE EFFECT OF MAGNETIC FIELDS ON LOW FREQUENCY OSCILLATING NATURAL CONVECTION WITH PRESSURE GRADIENT 被引量:1
12
作者 G.C.Sharma Madhu Jain Mahesh Chandra 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第3期274-283,共10页
The oscillating natural convection in the presence of transverse magnetic field with time depending pressure gradient is studied. The analysis of the problem is carried out by assuming that the fluid is flowing in a... The oscillating natural convection in the presence of transverse magnetic field with time depending pressure gradient is studied. The analysis of the problem is carried out by assuming that the fluid is flowing in a parallel plate configuration. The emphasis is on low frequency oscillating convective flows induced by g-jitter associated with micro gravity because of their importance to the space processing materials. A general solution for an oscillating flow in the presence of transverse magnetic field is carried out. Some special cases of the oscillating flow and its response to an applied magnetic field are performed. It was observed that the behavior of oscillating free convective flows depends on frequency, amplitude of the driving buoyancy forces, temperature gradient,magnetic field and the electric conditions of the channel walls. In the absence of magnetic field, buoyancy force plays a predominant role in driving the oscillatory flow pattern, and velocity magnitude is also affected by temperature gradients. To suppress the oscillating flow external magnetic field can be used. It is also found that the reduction of the velocity is inversely proportional to the square of the applied magnetic field with conducting wall but directly proportional to the inverse of the magnetic field with insulating wall. Detailed calculations and computational results are also carried out to depict the real situation. 展开更多
关键词 CONVECTION g- jitter acceleration buoyancy force magnetic field pressure gradient
下载PDF
Pressure control method and device innovative design for deep oil in-situ exploration and coring
13
作者 Nian-Han Wu Ming-Zhong Gao +5 位作者 Liang-Yu Zhu Jia-Nan Li Dong Fan Bin You Wei Luo Guo-Dong Zhu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1169-1182,共14页
Deep oil exploration coring technology cannot accurately maintain the in-situ pressure and temperature of samples, which leads to a distortion of deep oil and gas resource reserve evaluations based on conventional cor... Deep oil exploration coring technology cannot accurately maintain the in-situ pressure and temperature of samples, which leads to a distortion of deep oil and gas resource reserve evaluations based on conventional cores and cannot guide the development of deep oil and gas resources on Earth. The fundamental reason is the lack of temperature and pressure control in in-situ coring environments. In this paper, a pressure control method of a coring device is studied. The theory and method of deep intelligent temperature-pressure coupling control are innovatively proposed, and a multifield coupling dynamic sealing model is established. The optimal cardinality three term PID (Proportional-Integral-Differential) intelligent control algorithm of pressure system is developed. The temperature-pressure characteristic of the gas-liquid two-phase cavity is analyzed, and the pressure intelligent control is carried out based on three term PID control algorithms. An in-situ condition-preserved coring (ICP-Coring) device is developed, and an intelligent control system for the temperature and pressure of the coring device is designed and verified by experiments. The results show that the temperature-pressure coupling control system can effectively realize stable sealing under temperature-pressure fields of 140 MPa and 150 °C. The temperature-pressure coupling control method can accurately realize a constant pressure inside the coring device. The maximum working pressure is 140 MPa, and the effective pressure compensation range is 20 MPa. The numerical simulation experiment of pressure system control algorithm is carried out, and the optimal cardinality and three term coefficients are obtained. The pressure steady-state error is less than 0.01%. The method of temperature-pressure coupling control has guiding significance for coring device research, and is also the basis for temperature-pressure decoupling control in ICP-Coring. 展开更多
关键词 Deep oil exploration Fidelity coring device Temperature-pressure coupling control theory pressure control algorithm Temperature-pressure field alternating model
下载PDF
Effect of change in large and fast solar wind dynamic pressure on geosynchronous magnetic field 被引量:1
14
作者 Borodkova 刘静波 +3 位作者 黄朝晖 Zastenker G N 王赤 Eiges P E 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第10期2458-2464,共7页
We present a comparison of changes in large and sharp solar wind dynamic pressure, observed by several spacecraft, with fast disturbances in the magnetospheric magnetic field, measured by the geosynchronous satellites... We present a comparison of changes in large and sharp solar wind dynamic pressure, observed by several spacecraft, with fast disturbances in the magnetospheric magnetic field, measured by the geosynchronous satellites. More than 260 changes in solar wind pressure during the period 1996-2003 are selected for this study. Large statistics show that an increase (a decrease) in dynamic pressure always results in an increase (a decrease) in the magnitude of geosynchronous magnetic field. The amplitude of response to the geomagnetic field strongly depends on the location of observer relative to the noon meridian, the value of pressure before disturbance, and the change in amplitude of pressure. 展开更多
关键词 solar wind dynamic pressure changes geosynchronous magnetic field
下载PDF
Side abutment pressure distribution by field measurement 被引量:8
15
作者 WANG Lian-guo SONG Yang +1 位作者 HE Xing-hua ZHANG Jian 《Journal of China University of Mining and Technology》 EI 2008年第4期527-530,共4页
Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positio... Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrange- ment, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the posi- tion of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall. 展开更多
关键词 现场测量 侧支承压力 最大压力 压力分布
下载PDF
Formation of overpressure system and its relationship with the distribution of large gas fields in typical foreland basins in central and western China 被引量:1
16
作者 LI Wei CHEN Zhuxin +3 位作者 HUANG Pinghui YU Zhichao MIN Lei LU Xuesong 《Petroleum Exploration and Development》 CSCD 2021年第3期625-640,共16页
Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the character... Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the characteristics and formation mechanisms of formation fluid overpressure systems in different foreland basins and the relationship between overpressure systems and large-scale gas accumulation are discussed.(1) The formation mechanisms of formation overpressure in different foreland basins are different. The formation mechanism of overpressure in the Kuqa foreland basin is mainly the overpressure sealing of plastic salt gypsum layer and hydrocarbon generation pressurization in deep–ultra-deep layers, that in the southern Junggar foreland basin is mainly hydrocarbon generation pressurization and under-compaction sealing, and that in the western Sichuan foreland basin is mainly hydrocarbon generation pressurization and paleo-fluid overpressure residual.(2) There are three common characteristics in foreland basins, i.e. superimposed development of multi-type overpressure and multi-layer overpressure, strong–extremely strong overpressure developed in a closed foreland thrust belt, and strong–extremely strong overpressure developed in a deep foreland uplift area.(3) There are four regional overpressure sealing and storage mechanisms, which play an important role in controlling large gas fields, such as the overpressure of plastic salt gypsum layer, the overpressure formed by hydrocarbon generation pressurization, the residual overpressure after Himalayan uplift and denudation, and the under-compaction overpressure.(4) Regional overpressure is an important guarantee for forming large gas fields, the sufficient gas source, large-scale reservoir and trap development in overpressure system are the basic conditions for forming large gas fields, and the overpressure system is conducive to forming deep to ultra-deep large gas fields. 展开更多
关键词 central and western China foreland basin overpressure system large gas field hydrocarbon generation pressurization under-compaction salt gypsum layer overpressure sealing overpressure residual
下载PDF
Effects of gully terrain on stress field distribution and ground pressure behavior in shallow seam mining 被引量:7
17
作者 Li Jianwei Liu Changyou Zhao Tong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期255-260,共6页
This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based... This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine.The effects of gully terrain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress(η) at the location corresponding to the maximum vertical stress.Based on the function η =j(h),the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area,moderately affected area,or non-affected area.Working face 6106 in the Chuancao Gedan Mine had a coal bed Jepth <80 m and was located in what was identified as a significantly affected area.Hence,mining may cause sliding of the gully slope and increased loading(including significant dynamic loading) on the roof strata.Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope,and that dynamic loadings were observed upslope of the working face expansion,provided that the expanding direction of the working face is parallel to the gully. 展开更多
关键词 应力场分布 地形条件 煤层开采 行为 地压 浅埋 沟道 垂直应力
下载PDF
Corona with Streamers in Atmospheric Pressure Air in a Highly Inhomogeneous Electric Field 被引量:1
18
作者 Victor Tarasenko Evgenii Baksht +4 位作者 Vladimir Kuznetsov Victor Panarin Victor Skakun Eduard Sosnin Dmitry Beloplotov 《Journal of Atmospheric Science Research》 2020年第4期28-37,共10页
The paper presents research data on positive and negative coronas inatmospheric pressure air in a highly inhomogeneous electric field. Thedata show that irrespective of the polarity of pointed electrodes placed ina hi... The paper presents research data on positive and negative coronas inatmospheric pressure air in a highly inhomogeneous electric field. Thedata show that irrespective of the polarity of pointed electrodes placed ina high electric field (200 kV/cm), this type of discharge develops via ballstreamers even if the gap voltage rises slowly (0.2 kV/ms). The start voltageof first positive streamers, compared to negative ones, is higher andthe amplitude and the frequency of their current pulses are much lower:about two times and more than two orders of magnitude, respectively.The higher frequency of current pulses from negative streamers provideshigher average currents and larger luminous areas of negative coronascompared to positive ones. Positive and negative cylindrical streamersfrom a pointed to a plane electrode are detected and successive dischargetransitions at both polarities are identified. 展开更多
关键词 Positive and negative coronas Atmospheric pressure air Highly inhomogeneous electric field ICCD camera Ball streamer Cylindrical streamer
下载PDF
Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics
19
作者 Atif HUSSAIN 高勋 +2 位作者 李奇 郝作强 林景全 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第1期79-84,共6页
In this work,we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography.A... In this work,we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography.A particular emphasis was given to the plume dynamics(shape,size) with the combined effects of ambient gas pressures and an external magnetic field.Free expansion,sharpening effect,and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures.Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes,such as plume splitting,elliptical geometry changes,radial expansion,and plume confinement.Furthermore,the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures. 展开更多
关键词 magnetic field air pressure EXPANSION plume front PROPAGATION
下载PDF
Advanced high-pressure transport measurement system integrated with low temperature and magnetic field
20
作者 郭静 吴奇 孙力玲 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期91-99,共9页
We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Con... We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented. 展开更多
关键词 high pressure low temperature magnetic field SUPERCONDUCTIVITY
下载PDF
上一页 1 2 233 下一页 到第
使用帮助 返回顶部