Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground ...Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.展开更多
The performance of a soil-pile system can be significantly influenced by ground motion parameters. However, few research efforts have been performed to provide a complete description of the influence of key ground mot...The performance of a soil-pile system can be significantly influenced by ground motion parameters. However, few research efforts have been performed to provide a complete description of the influence of key ground motion parameters on the pile’s behavior in liquefiable soil. In this study, a three-dimensional finite element(FE) model, incorporating a multisurface plasticity solid-fluid fully coupled formulation soil constitutive model, is developed and calibrated based on centrifuge test data. Seventy-two near-fault non-pulse-like(NF-NP) and seventy-two near-fault pulse-like(NF-P) ground motion records are studied with the calibrated FE model to distinguish the effects of several common ground motion parameters soon afterwards. Base on the parametric study results, a simple index, RPGV/PGA(i.e., the ratio of peak ground velocity(PGV) to peak ground acceleration(PGA)), shows its capability on characterizing the pile behavior under both NF-NP and NF-P ground motions. Furthermore, two equations are developed to characterize the relationships between the RPGV/PGA as well as the maximum pile’s moments and displacements. In general, this study can be helpful to gain new insights on the influence of typical index parameters for near-field ground motions on the response of the pile foundation in liquefiable soil.展开更多
Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration ...Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum, a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse.展开更多
This study explores the irregularity and complexity of strong earthquake ground motions from the perspective of fractal geometry, and constructs a relation with the frequency content of the ground motions. The box-cou...This study explores the irregularity and complexity of strong earthquake ground motions from the perspective of fractal geometry, and constructs a relation with the frequency content of the ground motions. The box-counting fractal dimensions and five representative period parameters of near-fault ground motions from the Chi-Chi and Northridge earthquakes are calculated and compared. Numerical results indicate that the acceleration and velocity time histories of ground motions present the statistical fractal property, and the dominant pulses of near-fault ground motions have a significant influence on their box dimensions and periods. Further, the average box dimension of near-fault impulsive ground motions is smaller, and their irregular degree of wave forms is lower. Moreover, the box dimensions of ground motions reflect their frequency properties to a large extent, and can be regarded as an alternative indicator to represent their frequency content. Finally, the box dimension D of the acceleration histories shows a considerably negative correlation with the mean period T. Meanwhile, the box dimension of the velocity histories Dye is negatively correlated with the characteristic period T and improved characteristic period Tgi.展开更多
To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors (R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records...To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors (R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-p-T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verified.展开更多
The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions.Moreover,not all near-fault ground motion records present...The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions.Moreover,not all near-fault ground motion records present distinct pulses in the velocity time histories.In this paper,the parameterized stochastic model of near-fault ground motion with the strongest energy and pulse occurrence probability is suggested,and the Monte Carlo simulation(MSC)and subset simulation are utilized to calculate the first excursion probability of inelastic single-degree-of-freedom(SDOF)systems subjected to these types of near-fault ground motion models,respectively.Firstly,the influences of variation of stochastic pulse model parameters on structural dynamic reliability with different fundamental periods are explored.It is demonstrated that the variation of pulse period,peak ground velocity and pulse waveform number have significant effects on structural reliability and should not be ignored in reliability analysis.Then,subset simulation is verified to be unbiased and more efficient for computing small reliable probabilities of structures compared to MCS.Finally,the reliable probabilities of the SDOF systems with different fundamental periods subjected to impulsive,non-pulse ground motions and the ground motions with pulse occurrence probability are performed,separately.It is indicated that the ground motion model with the pulse occurrence probability can give a rational estimate on structural reliability.The impulsive and ordinary ground motion models may overestimate and underestimate the reliability of structures with fundamental period much less than the mean pulse period of earthquake ground motions.展开更多
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforce...Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load- deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.展开更多
An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground m...An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.展开更多
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete (r.c.) spatial frames, because only far-fault ground motions a...The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete (r.c.) spatial frames, because only far-fault ground motions are considered in the seismic codes. Strong near-fault earth- quakes are characterized by long-duration (horizontal) pulses and high values of the ratio ~PGA of the peak value of the vertical acceleration, PGAv, to the analogous value of the horizontal acceleration, PGAH, which can become critical for girders and columns. In this work, six- and twelve-storey r.c. spatial frames are designed according to the provisions of the Italian seismic code, considering the horizontal seismic loads acting (besides the gravity loads) alone or in combination with the vertical ones. The non- linear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like itera- tive procedure. A lumped plasticity model based on the Haar-K^n~m principle is adopted to model the inelastic behaviour of the frame members. For the numerical investigation, five near-fault ground motions with high values of the acceleration ratio C^p6A are considered. Moreover, following recent seismological studies, which allow the extraction of the largest (horizontal) pulse from a near-fault ground motion, five pulse-type (horizontal) ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted. The results of the nonlinear dynamic analysis carried out on the test structures highlighted thathorizontal and vertical components of near-fault ground motions may require additional consideration in the seis- mic codes.展开更多
In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposi...In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.展开更多
Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground ...Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.展开更多
There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure, However few...There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure, However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code,展开更多
In this study, both records of a digital accelerometer and a seismograph at a far-field station for the 2008 Ms8.0 Wenchuan earthquake were analyzed, and a pulsive noise model for acceleration record was found. By com...In this study, both records of a digital accelerometer and a seismograph at a far-field station for the 2008 Ms8.0 Wenchuan earthquake were analyzed, and a pulsive noise model for acceleration record was found. By comparing with the result of a rotary-table tilt test, we concluded that the noises in the acceleration records were caused by ground tilt as a result of rotational ground motion. We analyzed the key noises that may cause baseline offset, and proposed a baseline-correction scheme for preserving the long-period ground motion in accordance with specific pulse positions. We then applied this correction method to some near-field strongmotion acceleration records. The result shows that this method can obtain near-field ground displacements, including permanent displacements, in agreement with GPS data, and that this method is more stable than other methods.展开更多
This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the fi...This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.展开更多
Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the ...Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the seismic response of pile-supported wharf(PSW)structures under NF-P ground motions.In this study,a three-dimensional finite element numerical model is created to simulate a PSW.By imparting three types of ground motion,the engineering demand parameters(EDPs)of PSW under NF-P ground motions were analyzed and compared,in which EDPs are the maximum displacement and bending moment of the piles.Twenty intensity measures(IMs)were selected to characterize the properties of ground motions.The correlation between IMs and EDPs was explored.The results show that the piles present larger displacement and bending moment under NF-P ground motions compared to NF-NP and FF ground motions.None of the IMs have a high correlation with EDPs under NF-P ground motions,and these IMs are more applicable to FF ground motions.The correlation coefficients between EDPs and IMs under three types of ground motion were obtained,which will provide a valuable reference for the seismic design of PSWs.展开更多
In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establis...In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.展开更多
The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spec...The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects.展开更多
Earthquake-induced strong near-fault ground motion is typically accompanied by largevelocity pulse-like component,which causes serious damage to slopes and buildings.Although not all near-fault ground motions contain ...Earthquake-induced strong near-fault ground motion is typically accompanied by largevelocity pulse-like component,which causes serious damage to slopes and buildings.Although not all near-fault ground motions contain a pulse-like component,it is important to consider this factor in regional earthquake-induced landslide susceptibility assessment.In the present study,we considered the probability of the observed pulse-like ground motion at each site(PP)in the region of an earthquake as one of the conditioning factors for landslide susceptibility assessment.A subset of the area affected by the 1994Mw6.7 Northridge earthquake in California was examined.To explore and verify the effects of PP on landslide susceptibility assessment,seven models were established,consisting of six identical influencing factors(elevation,slope gradient,aspect,distance to drainage,distance to roads,and geology)and one or two factors characterizing the intensity of the earthquake(distance to fault,peak ground acceleration,peak ground velocity,and PP)in logistic regression analysis.The results showed that the model considering PP performed better in susceptibility assessment,with an area under the receiver operating characteristic curve value of 0.956.Based on the results of relative importance analysis,the contribution of the PP value to earthquakeinduced landslide susceptibility was ranked fourth after the slope gradient,elevation,and lithology.The prediction performance of the model considering the pulse-like effect was better than that reported previously.A logistic regression model that considers the pulse-like effect can be applied in disaster prevention,mitigation,and construction planning in near-fault areas.展开更多
The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion...The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.展开更多
Near-fault ground motions with long-period pulses have been identified as critical in the design of structures. To aid in the representation of this special type of motion, eight simple pulses that characterize the ef...Near-fault ground motions with long-period pulses have been identified as critical in the design of structures. To aid in the representation of this special type of motion, eight simple pulses that characterize the effects of either the flingstep or forward-directivity are considered. Relationships between pulse amplitudes and velocity pulse period for different pulses are discussed. Representative ratios and peak acceleration amplification can exhibit distinctive features depending on variations in pulse duration, amplitude and the selected acceleration pulse shape. Additionally, response spectral characteristics for the equivalent pulses are identified and compared in terms of fixed PGA and PGV, respectively. Response spectra are strongly affected by the duration of pulses and the shape of the basic pulses. Finally, dynamic time history response features of a damped SDOF system subjected to pulse excitations are examined. These special aspects of pulse waveforms and their response spectra should be taken into account in the estimation of ground motions for a project site close to a fault.展开更多
基金National Natural Science Foundation of China (59895410) Commonweal Foundation of the Ministry of Science and Technology of China (2001DIB20098).
文摘Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.
基金National Key R&D Program of China under Grant No.2016YFE0205100the National Natural Science Foundation of China under Grant No.51578195+1 种基金the Technology Research and Development Plan Program of China Railway Corporation under Grant No.J2016Z025the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences under Grant No.Z016007
文摘The performance of a soil-pile system can be significantly influenced by ground motion parameters. However, few research efforts have been performed to provide a complete description of the influence of key ground motion parameters on the pile’s behavior in liquefiable soil. In this study, a three-dimensional finite element(FE) model, incorporating a multisurface plasticity solid-fluid fully coupled formulation soil constitutive model, is developed and calibrated based on centrifuge test data. Seventy-two near-fault non-pulse-like(NF-NP) and seventy-two near-fault pulse-like(NF-P) ground motion records are studied with the calibrated FE model to distinguish the effects of several common ground motion parameters soon afterwards. Base on the parametric study results, a simple index, RPGV/PGA(i.e., the ratio of peak ground velocity(PGV) to peak ground acceleration(PGA)), shows its capability on characterizing the pile behavior under both NF-NP and NF-P ground motions. Furthermore, two equations are developed to characterize the relationships between the RPGV/PGA as well as the maximum pile’s moments and displacements. In general, this study can be helpful to gain new insights on the influence of typical index parameters for near-field ground motions on the response of the pile foundation in liquefiable soil.
基金U.S. National Science Foundation Under Grant CMS-0202846
文摘Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum, a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse.
基金National Natural Science Foundation of China under Grant Nos.50978047 and 11332004National Basic Research Program of China under Grant No.2010CB832703
文摘This study explores the irregularity and complexity of strong earthquake ground motions from the perspective of fractal geometry, and constructs a relation with the frequency content of the ground motions. The box-counting fractal dimensions and five representative period parameters of near-fault ground motions from the Chi-Chi and Northridge earthquakes are calculated and compared. Numerical results indicate that the acceleration and velocity time histories of ground motions present the statistical fractal property, and the dominant pulses of near-fault ground motions have a significant influence on their box dimensions and periods. Further, the average box dimension of near-fault impulsive ground motions is smaller, and their irregular degree of wave forms is lower. Moreover, the box dimensions of ground motions reflect their frequency properties to a large extent, and can be regarded as an alternative indicator to represent their frequency content. Finally, the box dimension D of the acceleration histories shows a considerably negative correlation with the mean period T. Meanwhile, the box dimension of the velocity histories Dye is negatively correlated with the characteristic period T and improved characteristic period Tgi.
基金Foundation for Research and Science and Technology of New Zealand, Contract Number: C05X0208 and C05X0301the Foundation for Western Transportation Science and Technology Research, Contract No. 200831800098
文摘To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors (R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-p-T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verified.
基金supports of the National Natural Science Foundation of China(Grant Nos.51478086 and 11672167)Shandong Province Natural Science Foundation of China(Grant No.ZR2015EL048)are much appreciated.
文摘The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions.Moreover,not all near-fault ground motion records present distinct pulses in the velocity time histories.In this paper,the parameterized stochastic model of near-fault ground motion with the strongest energy and pulse occurrence probability is suggested,and the Monte Carlo simulation(MSC)and subset simulation are utilized to calculate the first excursion probability of inelastic single-degree-of-freedom(SDOF)systems subjected to these types of near-fault ground motion models,respectively.Firstly,the influences of variation of stochastic pulse model parameters on structural dynamic reliability with different fundamental periods are explored.It is demonstrated that the variation of pulse period,peak ground velocity and pulse waveform number have significant effects on structural reliability and should not be ignored in reliability analysis.Then,subset simulation is verified to be unbiased and more efficient for computing small reliable probabilities of structures compared to MCS.Finally,the reliable probabilities of the SDOF systems with different fundamental periods subjected to impulsive,non-pulse ground motions and the ground motions with pulse occurrence probability are performed,separately.It is indicated that the ground motion model with the pulse occurrence probability can give a rational estimate on structural reliability.The impulsive and ordinary ground motion models may overestimate and underestimate the reliability of structures with fundamental period much less than the mean pulse period of earthquake ground motions.
基金Science Council, Chinese Taipei 106, Under Grant No. NSC-95-2625-Z-027-004
文摘Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load- deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.
基金The National Natural Science Foundation of China (No. 50778078)
文摘An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.
文摘The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete (r.c.) spatial frames, because only far-fault ground motions are considered in the seismic codes. Strong near-fault earth- quakes are characterized by long-duration (horizontal) pulses and high values of the ratio ~PGA of the peak value of the vertical acceleration, PGAv, to the analogous value of the horizontal acceleration, PGAH, which can become critical for girders and columns. In this work, six- and twelve-storey r.c. spatial frames are designed according to the provisions of the Italian seismic code, considering the horizontal seismic loads acting (besides the gravity loads) alone or in combination with the vertical ones. The non- linear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like itera- tive procedure. A lumped plasticity model based on the Haar-K^n~m principle is adopted to model the inelastic behaviour of the frame members. For the numerical investigation, five near-fault ground motions with high values of the acceleration ratio C^p6A are considered. Moreover, following recent seismological studies, which allow the extraction of the largest (horizontal) pulse from a near-fault ground motion, five pulse-type (horizontal) ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted. The results of the nonlinear dynamic analysis carried out on the test structures highlighted thathorizontal and vertical components of near-fault ground motions may require additional consideration in the seis- mic codes.
基金Natural Science Foundation of China Under Grant No. 50278090
文摘In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.
基金National Natural Science Foundation of China (59895410), Commonweal Foundation of the Ministry of Science and Technology of China (2001DIB20098).
文摘Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.
基金National Natural Science Foundation of China (50278090).
文摘There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure, However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code,
基金supported by the National Natural Science Foundation of China (41004020)the Director Foundation of Institute of Seismology,China Earthquake Administration (IS200926044)
文摘In this study, both records of a digital accelerometer and a seismograph at a far-field station for the 2008 Ms8.0 Wenchuan earthquake were analyzed, and a pulsive noise model for acceleration record was found. By comparing with the result of a rotary-table tilt test, we concluded that the noises in the acceleration records were caused by ground tilt as a result of rotational ground motion. We analyzed the key noises that may cause baseline offset, and proposed a baseline-correction scheme for preserving the long-period ground motion in accordance with specific pulse positions. We then applied this correction method to some near-field strongmotion acceleration records. The result shows that this method can obtain near-field ground displacements, including permanent displacements, in agreement with GPS data, and that this method is more stable than other methods.
文摘This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.
基金National Natural Science Foundation of China under Grant Nos.42072310 and 51808307。
文摘Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the seismic response of pile-supported wharf(PSW)structures under NF-P ground motions.In this study,a three-dimensional finite element numerical model is created to simulate a PSW.By imparting three types of ground motion,the engineering demand parameters(EDPs)of PSW under NF-P ground motions were analyzed and compared,in which EDPs are the maximum displacement and bending moment of the piles.Twenty intensity measures(IMs)were selected to characterize the properties of ground motions.The correlation between IMs and EDPs was explored.The results show that the piles present larger displacement and bending moment under NF-P ground motions compared to NF-NP and FF ground motions.None of the IMs have a high correlation with EDPs under NF-P ground motions,and these IMs are more applicable to FF ground motions.The correlation coefficients between EDPs and IMs under three types of ground motion were obtained,which will provide a valuable reference for the seismic design of PSWs.
基金National Key Research and Development Program,Ministry of Science and Technology of China under Grant No.2022YFC3803004the National Natural Science Foundation of China under Grant No.51838004。
文摘In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.
基金financial support from Teesside University to support the Ph.D. program of the first author.
文摘The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects.
基金the National Natural Science Foundation of China(41977213,41977233)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0906)+2 种基金CREC Sichuan Eco-City Investment Co,Ltd.(R110121H01092)Fundamental Research Funds for the Central Universities(XJ2021KJZK039)SichuanProvincial Transportation Science and Technology Project(2021-A-03)。
文摘Earthquake-induced strong near-fault ground motion is typically accompanied by largevelocity pulse-like component,which causes serious damage to slopes and buildings.Although not all near-fault ground motions contain a pulse-like component,it is important to consider this factor in regional earthquake-induced landslide susceptibility assessment.In the present study,we considered the probability of the observed pulse-like ground motion at each site(PP)in the region of an earthquake as one of the conditioning factors for landslide susceptibility assessment.A subset of the area affected by the 1994Mw6.7 Northridge earthquake in California was examined.To explore and verify the effects of PP on landslide susceptibility assessment,seven models were established,consisting of six identical influencing factors(elevation,slope gradient,aspect,distance to drainage,distance to roads,and geology)and one or two factors characterizing the intensity of the earthquake(distance to fault,peak ground acceleration,peak ground velocity,and PP)in logistic regression analysis.The results showed that the model considering PP performed better in susceptibility assessment,with an area under the receiver operating characteristic curve value of 0.956.Based on the results of relative importance analysis,the contribution of the PP value to earthquakeinduced landslide susceptibility was ranked fourth after the slope gradient,elevation,and lithology.The prediction performance of the model considering the pulse-like effect was better than that reported previously.A logistic regression model that considers the pulse-like effect can be applied in disaster prevention,mitigation,and construction planning in near-fault areas.
基金Project(2013CB036203)supported by the National Basic Research Program of ChinaProject(2013M530022)supported by China Postdoctoral Science Foundation+4 种基金Project(2013-K5-31)supported by Science and Technology Plan of Ministry of Housing and Urban-Rural Development of ChinaProject supported by High-level Scientific Research Foundation for the Introduction of Talent of Yangzhou University,ChinaProject supported by the Open Fund of the National Engineering Laboratory for High Speed Railway Construction,ChinaProject(IRT1296)supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(50908236)supported by the National Natural Science Foundation of China
文摘The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.
基金Supported by: China Natural Science Foundation of International (Regional) Cooperative Research Program Under Grant No. 50420120133 Heilongjiang Natural Science Foundation Under Grant No. ZGJ03-03 The Research Fund for the Doctoral Program of Higher Education of China Under Grant No. 20030213042
文摘Near-fault ground motions with long-period pulses have been identified as critical in the design of structures. To aid in the representation of this special type of motion, eight simple pulses that characterize the effects of either the flingstep or forward-directivity are considered. Relationships between pulse amplitudes and velocity pulse period for different pulses are discussed. Representative ratios and peak acceleration amplification can exhibit distinctive features depending on variations in pulse duration, amplitude and the selected acceleration pulse shape. Additionally, response spectral characteristics for the equivalent pulses are identified and compared in terms of fixed PGA and PGV, respectively. Response spectra are strongly affected by the duration of pulses and the shape of the basic pulses. Finally, dynamic time history response features of a damped SDOF system subjected to pulse excitations are examined. These special aspects of pulse waveforms and their response spectra should be taken into account in the estimation of ground motions for a project site close to a fault.