The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation f...The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.展开更多
The key for dust control of coal mine is to clarify the dust concentration distribution and sedimentation in different areas. Both similarity experiment and numerical simulation method have certain restrictions and ar...The key for dust control of coal mine is to clarify the dust concentration distribution and sedimentation in different areas. Both similarity experiment and numerical simulation method have certain restrictions and are quite different from the actual situation on site. In order to study the dust sedimentation regularity of coal mine in large mining height, “filter membrane method” is adopted in this paper, i.e., to dry and weigh the filter membrane before and after sampling, collect the dust of respirable zone on mining face and calculate the dust concentration based on a main airway of 100 m. The result shows that: A large amount of dust will be produced during coal mining, wherein the maximum dust concentration from 6 m upstream to 100 m downstream of coal cutter is 121 mg/m3</sup>, while the minimum dust concentration is 61 mg/m3</sup>;The dust concentration in return airway is reduced with the distance increases, while the dust concentration at the entrance is 91 mg/m3</sup>;A large amount of dust may fall from roof during section advancing and improves the dust concentration of hydraulic support in walking area obviously;The dust granularity of mining face and return airway is 0 - 100 μm, but the amount of respirable dust is higher than 80%, the larger the dust particle size, the higher the dust concentration. Besides, dust in small particle size can be suspended in air flow for longer, but that in large particle size may subside under the action of gravity;To reduce dust exposure, the mining position shall be located in the windward direction of advancing or coal cutter. This research can provide guidance for taking dust prevention measures of working face in large mining height.展开更多
Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimi...Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.展开更多
Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper....Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.展开更多
The aerosol number concentration and size distribution were measured with the newly developed Wide-range Particle Spectrometer in summer and winter of 2006 at the urban site of Jinan City. Here reported the characteri...The aerosol number concentration and size distribution were measured with the newly developed Wide-range Particle Spectrometer in summer and winter of 2006 at the urban site of Jinan City. Here reported the characteristics of fine particles of the different observation seasons. Relative high number concentrations for the particles in the diameter range of 10-500 nm were observed in both seasons. It was found that the dominant number distributed in particle diameter smaller than 100 nm and the percentage over the number concentration of all air particles is much higher than what has been measured in other urban sites over the world. The number mean diameter in summer was much smaller than in winter, strongly suggesting the different origin of ultrafine particles in different seasons. That is, particles in ultrafine mode mainly came from nucleation and new particle formation in summer while from traffic emission in winter. The diurnal variation also supported this point. Number concentration in the diameter range of 10-200 um got their peak values at noontime, well correlated with the mixing ratio of SO2 and the intensity of solar radiation in summer. While in winter, those in the same diameter range showed the main peaks during the traffic hours happened in the morning and evening.展开更多
The use of remote sensing to monitor nitrogen(N) in crops is important for obtaining both economic benefit and ecological value because it helps to improve the efficiency of fertilization and reduces the ecological an...The use of remote sensing to monitor nitrogen(N) in crops is important for obtaining both economic benefit and ecological value because it helps to improve the efficiency of fertilization and reduces the ecological and environmental burden.In this study,we model the total leaf N concentration(TLNC) in winter wheat constructed from hyperspectral data by considering the vertical N distribution(VND).The field hyperspectral data of winter wheat acquired during the 2013–2014 growing season were used to construct and validate the model.The results show that:(1) the vertical distribution law of LNC was distinct,presenting a quadratic polynomial tendency from the top layer to the bottom layer.(2) The effective layer for remote sensing detection varied at different growth stages.The entire canopy,the three upper layers,the three upper layers,and the top layer are the effective layers at the jointing stage,flag leaf stage,flowering stages,and filling stage,respectively.(3) The TLNC model considering the VND has high predicting accuracy and stability.For models based on the greenness index(GI),mND705(modified normalized difference 705),and normalized difference vegetation index(NDVI),the values for the determining coefficient(R2),and normalized root mean square error(nRMSE) are 0.61 and 8.84%,0.59 and 8.89%,and 0.53 and 9.37%,respectively.Therefore,the LNC model with VND provides an accurate and non-destructive method to monitor N levels in the field.展开更多
UNITANK is a biological wastewater treatment process that combines the advantages of traditional activated sludge process and sequencing batch reactor, which is divided into Tank A, B and C. In this study, the sludge ...UNITANK is a biological wastewater treatment process that combines the advantages of traditional activated sludge process and sequencing batch reactor, which is divided into Tank A, B and C. In this study, the sludge distribution and its impact on performance of UNITANK were carried out in Liede Wastewater Plant (WWTP) of Guangzhou, China. Results showed that there was a strong affiliation between Tank A and B of the system in sludge concentration distribution. The initial sludge concentration in Tank A could present the sludge distribution of the whole system. The sludge distribution was mainly influenced by hydraulic condition. Unsteady sludge distribution had an impact on variations of substrates in reactors, especially in decisive reactor, and this could lead to failure of system. Settler could partially remove substrates such as COD and NO3-N, but there was adventure of sludge deterioration. The rational initial sludge concentration in Tank A should be 4000-6000 mg/L MLSS.展开更多
The vortex pump is suitable for salt solution transportation. But the salt-out flow mechanism in the pump has not been understood fully. Salt-out layer formation and growth rate are closely related to crystal particle...The vortex pump is suitable for salt solution transportation. But the salt-out flow mechanism in the pump has not been understood fully. Salt-out layer formation and growth rate are closely related to crystal particle motion and concentration distribution. Study on the particle hydrodynamic characteristics in the pump volute becomes a key problem, because the crystal particles are mainly distributing in this zone after they enter the pump. Phase Doppler particle analyzer(PDPA) is used to measure the two-phase flow field in a model pump volute to get more understanding about the salt-out phenomenon. The crystal particle velocities are obtained in all three peripheral, radial and axial directions. Particle size and particle number density(PND) measurements are also performed in the experiment. Results are presented and discussed along the radial direction under different pump operating conditions, as well as various axial measurement positions. It is found that particle velocity gradient of peripheral component varies with the pump discharge. There is a turning point of relation between peripheral velocity component and discharge. Radial flow velocity curves look like a saddle shape and velocity magnitudes are changing greatly with the discharge. The non-equilibrium velocity feature between liquid and solid phase on this direction is also remarkable. Particles flow into the impeller at radial position R〈I, and the axial velocity component increases in this region. The particle size curve shows an open-up parabola distribution. The largest particles are distributing near the casing peripheral wall. As flow rate increases, accordingly PND increases. It also grows up in the axial-outward direction towards the suction cover. Crystal particle aggregation phenomenon can be revealed from the analysis of particle size and PND distribution, and the aggregation region is determined as well. Research results are helpful for optimal design of this kind of pump preventing salt-out.展开更多
In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissi...In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissipation of spilling breaking wave and hydraulic jump, formulas are proposed to predict time averaged suspended sediment concentration under both non-breaking and breaking waves. Assuming that the sediment diffusion coefficient, which is related with energy dissipation, is proportional to water depth, formulas are proposed to predict close-to-bed suspended sediment concentration and vertical distribution of suspended sediment under spilling breaking waves, and the prediction shows a good agreement with the measurement.展开更多
A research work was conducted to investigate the variations in concentration and distribution of health-related elements affected by environmental and genotypic differences in rice grains. The grain of Xieqingzao B (...A research work was conducted to investigate the variations in concentration and distribution of health-related elements affected by environmental and genotypic differences in rice grains. The grain of Xieqingzao B (indica rice variety) and Xiushui 110 (japonica rice variety) were divided into: hull, bran and milled rice, based on the conventional rice consumption and process. Xieqingzao B was grown at four different locations, and at one location, it was planted in the same field and season as Xiushui 110. In addition, another four indica and four japonica varieties were cultivated in the same field and time to analyze the elements in milled rice. The average concentrations of total P and phytic acid P were the highest in the bran, followed by milled rice and hull; Zn, K, Mg, and As concentrations were the highest in bran, followed by hull and milled rice, while Fe, Ca, and Cu concentrations were the highest in the hull, but similar in bran and milled rice. The result indicated that genotype and environment significantly affected the concentrations of all the tested elements, while the distribution of the above elements in grains was not in the same order as concentration. Moreover, all the elements except 97,7% of Cu and 93.2% of Fe was deposited in the hull on average, were mostly distributed either in the bran (37.3% and 57.7% for K and phytic acid P) or in milled rice (41.7%, 42.6%, 40.3%, 49.8% for Zn, Mg, As, total P, respectively).展开更多
Objective To estimate the frequency of daily average PM10 concentrations exceeding the air quality standard (AQS) and the reduction of particulate matter emission to meet the AQS from the statistical properties (pr...Objective To estimate the frequency of daily average PM10 concentrations exceeding the air quality standard (AQS) and the reduction of particulate matter emission to meet the AQS from the statistical properties (probability density functions) of air pollutant concentration. Methods The daily PM10 average concentration in Beijing, Shanghai, Guangzhou, Wuhan, and Xi'an was measured from 1 January 2004 to 31 December 2008. The PM10 concentration distribution was simulated by using the Iognormal, Weibull and Gamma distributions and the best statistical distribution of PM10 concentration in the 5 cities was detected using to the maximum likelihood method. Results The daily PM10 average concentration in the 5 cities was fitted using the Iognormal distribution. The exceeding duration was predicted, and the estimated PMlo emission source reductions in the 5 cities need to be 56.58%, 93.40%, 80.17%, 82.40%, and 79.80%, respectively to meet the AO, S. Conclusion Air pollutant concentration can be predicted by using the PM10 concentration distribution, which can be further applied in air quality management and related policy making.展开更多
Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle ma...Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.展开更多
The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP ...The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP from January of 2009 to February of 2010 in the Taklimakan Desert hinterland. Results show that: (1) The mass concentration value of 80 m PMl0 was higher, but PM2.5 and PM1.0 concentrations at 80 m was obviously lower than 4 m PMl0, and the value of 80 m PM1.0 mass concentration was the lowest. (2) The PM mass concentrations gradually decreased from night to sunrise, with the lowest concentration at 08:00, with the mass concentration gradually increased, up to the highest concentration around 18:00, and then decreased again. It was exactly the same with the changes of wind speed. (3) The high monthly average mass concentration of TSP mainly appeared from March to September, and the highest concentration was in April and May, subsequently gradually decreased. Also, March-September was a period with high value area of PM monthly average mass concentration, with the highest monthly average mass concentration of 846.0 p.g/m3 for 4 m PM^0 appeared in May. The concentration of PM10 was much higher than those of PM2.5 and PM1.0 at 80 m. There is a small difference between the concentration of PM2.5 and PM~ 0. Dust weather was the main factor which influenced the concentration content of the different diameter dust aerosol, and the more dust weather days, the higher content of coarse particle, conversely, fine particle was more. (4) The mass concentration of different diameter aerosols had the following sequence during dust weather: clear day 〈 blowing dust 〈 floating and blowing dust 〈 sandstorm. In different dust weather, the value of PM^o/TSP in fine weather was higher than that in floating weather, and much higher than those in blowing dust and sandstorm weather. (5) During the dust weather process, dust aerosol concentration gradually decreased with particle size decreasing. The dust aerosol mass concentration at different heights and diameter would have a peak value area every 3-4 days according to the strengthening process of dust weather.展开更多
A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sedimen...A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic ve- locity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra- diction between the lower limit of the integral and that of velocity distribution exists.展开更多
The number concentrations and drop size distributions(DSDs)of warm-rain hydrometeors play an important role in the simulation of microphysical processes.To evaluate the performance of the WDM6 scheme,which predicts th...The number concentrations and drop size distributions(DSDs)of warm-rain hydrometeors play an important role in the simulation of microphysical processes.To evaluate the performance of the WDM6 scheme,which predicts the cloud number concentration(Nc)explicitly in aspects of warm-rain hydrometeors number concentrations and DSDs,the simulation of the WDM6 scheme is compared with airborne observations of a flight trial,as well as with the simulations of the Thompson scheme and Morrison scheme.Results show that the WDM6 scheme produces smaller(larger)cloud(rain)number concentrations and wider cloud DSDs compared to the observations,with the largest biases at upper levels of stratiform cloud(SC).The Thompson scheme and the Morrison scheme,both of which set the Nc as a constant,compare better to the observations than the WDM6 scheme in aspects of Nc and DSD.Sensitivity tests of the initial cloud condensation nuclei(CCN)number concentration(CCN0)of the WDM6 scheme show that a better choice of the initial CCN0 may improve the simulation of convective cloud but helps little in terms of SC.The simulation of rain number concentration and DSD is not sensitive to the CCN0 in the WDM6 scheme.展开更多
Blood alcohol concentration (BAC) differs greatly among individuals, even when people of the same sex and age drink alcohol under the same drinking conditions. In this study, we investigated the main factors involved ...Blood alcohol concentration (BAC) differs greatly among individuals, even when people of the same sex and age drink alcohol under the same drinking conditions. In this study, we investigated the main factors involved in the internal reg-ulation of individual differences in BAC, focusing on the alcohol dehydrogenase 1B (ADH1B) genotype, blood acetal-dehyde concentration (BAcH), amount of habitual alcohol consumption, pharmacokinetic parameters of BAC, distribution volume of ethanol (Vd), and gastric emptying rate (GER) under the same drinking conditions. Twenty healthy Japanese males aged between 40 and 59 years old and having the aldehyde dehydrogenase 2 (ALDH2) genotype of ALDH 2*1/*2 were recruited for this study. The subjects were given 0.32 g ethanol/kg body weight in the form of commercially available beer (5%, v/v). The results showed that BAC-max differed greatly among individuals with a more than two-fold variation. When the BAC-time curve was compared among ADH1B genotypes (ADH1B*1/*1, *1/*2, and *2/*2), there were no differences in BAC among the genotypes. Although BAcH, monthly alcohol consumption, elimination rate of blood ethanol (β value) and ethanol disappearance rate from the body (EDR) can affect BAC, all of them had no correlations with BAC-max. However, Vd (liter/kg), ΔPlasma glucose concentration (ΔPGC = PGC30 min ? PGC0 min) and the serum concentration of gastric inhibitory polypeptide (GIP) did correlate with BAC-max. Model 2 in multiple linear regression analysis showed the optimal model for Vd and GIP with positive correlations with BAC-max. As GIP and ΔPGC are both reflected by gastric emptying rate (GER), we concluded that the individual differences in BAC after moderate drinking are mainly regulated by GER together with Vd. These findings demonstrate that together with body water content, the gastrointestinal tract plays an important role in the regulation of individual differences in BAC, involving first pass metabolism of ethanol.展开更多
Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the...Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the downtown campus of Ocean University of China, Qingdao, China. The concentrations of Al, Fe, Mn, Cu, Pb and Zn were determined by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The monthly variability of the mass concentrations of aerosol particles and the concentrations of trace metals are presented and discussed. The distribution pattern of these metals in PM10 and TSP is also discussed. During the observation period, the mass concentration of PM10 at this site ranged from 13.80 to 306.42μgm-3 , while that of TSP ranged from 31.02 to 568.82μgm-3. Both PM10 and TSP reached their highest concentrations in springtime, while the lowest values occurred in summertime. The concentrations of crustal metals followed the same variation pattern, while those of anthropogenic metals did not. A closer examination led to the conclusion that anthropogenic metals are mainly from local sources. The average concentration ratios of anthropogenic metals in PM10 to TSP were higher than the average mass ratio of PM10 to TSP, suggesting that there was a higher proportion of anthropogenic metals on smaller particles although there were a few exceptions. For crustal metals, however, the metal concentration ratios were close to the particle mass ratio, indicating that the distribution of crustal metals was much more homogeneous on aerosol particles with different sizes. The correlation analysis indicated that Al, Fe and Mn were originated from similar sources and were mainly controlled by the particle mass, while Cu, Pb and Zn were predominated by local anthropogenic sources, with Pb and Zn having similar origins.展开更多
Mercury species in water column, sediment and fish from the Hg-contaminated Baihua Reservoir were measured by trap pre-concentration and CVAFS and CVAAS detection methods. The results showed that the highest average t...Mercury species in water column, sediment and fish from the Hg-contaminated Baihua Reservoir were measured by trap pre-concentration and CVAFS and CVAAS detection methods. The results showed that the highest average total Hg concentration is up to {73.36} ng/L in the water column, {186.7} ng/L in pore water of surface sediment in the Baihua Reservoir. The total mercury concentrations in the sediments range from {0.87} to {33.74} mg/kg. This suggests that sediment re-suspending and Hg input from the upstream organochemical plant are the main mercury sources of water body for this reservoir. In addition, the possible reason why mercury is low in fish is that the low DOC and high pH are infavarable to methylmercury formation or absorption by fish.展开更多
To investigate the biobeical effects of terbium (Tb), male mice were intravenously ad ministered with TbCl3 at 10, 25, or 50 mg Tb/kg. Time-course and dose-related changes in organ distributions of Tb were determined ...To investigate the biobeical effects of terbium (Tb), male mice were intravenously ad ministered with TbCl3 at 10, 25, or 50 mg Tb/kg. Time-course and dose-related changes in organ distributions of Tb were determined . More than 95 % of the Tb in blood was in plas ma, and the concentrations decreased rapidly. Contrary to normal pharmacokinetics, Tb con centrations in plasma were higher in the 10 mg/kg group than in the 50 mg/kg group. The concentrations after injection of 25 mg/kg were between 10 and 50 mg/kg injections. Tb was incorporated mainly in liver, lung, and spleen. In all groups more than 80% of Tb adminis tered were found in these three organs. Disappearance of Tb in these organs was very slow.Tb was also found in kidney, heart and other organs. Coincidentally, it was found that the Ca concentration was increased in organs in which Tb was incorporated. After administration of Tb (50 mg/kg) the Ca concentration, compared to the controls, was 70-fold in spleen, 20-fold in lung, and 6-fold in liver. There were highly positive correlations between Tb and Ca concentrations in organs. Excretion of Tb in urine was 0. 15 ~ 0. 3 % and that in feces was 1.7~12. 5 % for up to 7 days. These results indicate that liver, lung, and spleen are the main target organs of Tb administered intravenously, and that the increase in Ca concentrations is one of the important biological effects of Tb in target organs展开更多
An electrochemical probe measurement system for detecting an electrogenerated etchant in solution is developed.Concentration distribution of electrogenerated etchant bromine as close as 8 micrometer to the surface of ...An electrochemical probe measurement system for detecting an electrogenerated etchant in solution is developed.Concentration distribution of electrogenerated etchant bromine as close as 8 micrometer to the surface of macrodisk is studied quantitatively.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2021YFC3001204)。
文摘The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.
文摘The key for dust control of coal mine is to clarify the dust concentration distribution and sedimentation in different areas. Both similarity experiment and numerical simulation method have certain restrictions and are quite different from the actual situation on site. In order to study the dust sedimentation regularity of coal mine in large mining height, “filter membrane method” is adopted in this paper, i.e., to dry and weigh the filter membrane before and after sampling, collect the dust of respirable zone on mining face and calculate the dust concentration based on a main airway of 100 m. The result shows that: A large amount of dust will be produced during coal mining, wherein the maximum dust concentration from 6 m upstream to 100 m downstream of coal cutter is 121 mg/m3</sup>, while the minimum dust concentration is 61 mg/m3</sup>;The dust concentration in return airway is reduced with the distance increases, while the dust concentration at the entrance is 91 mg/m3</sup>;A large amount of dust may fall from roof during section advancing and improves the dust concentration of hydraulic support in walking area obviously;The dust granularity of mining face and return airway is 0 - 100 μm, but the amount of respirable dust is higher than 80%, the larger the dust particle size, the higher the dust concentration. Besides, dust in small particle size can be suspended in air flow for longer, but that in large particle size may subside under the action of gravity;To reduce dust exposure, the mining position shall be located in the windward direction of advancing or coal cutter. This research can provide guidance for taking dust prevention measures of working face in large mining height.
文摘Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.
文摘Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.
基金Project supported by the National Basic Research Project(973)of China(No.2005CB422203)the National Post-Doctor Foundation of China(No.20060390990).
文摘The aerosol number concentration and size distribution were measured with the newly developed Wide-range Particle Spectrometer in summer and winter of 2006 at the urban site of Jinan City. Here reported the characteristics of fine particles of the different observation seasons. Relative high number concentrations for the particles in the diameter range of 10-500 nm were observed in both seasons. It was found that the dominant number distributed in particle diameter smaller than 100 nm and the percentage over the number concentration of all air particles is much higher than what has been measured in other urban sites over the world. The number mean diameter in summer was much smaller than in winter, strongly suggesting the different origin of ultrafine particles in different seasons. That is, particles in ultrafine mode mainly came from nucleation and new particle formation in summer while from traffic emission in winter. The diurnal variation also supported this point. Number concentration in the diameter range of 10-200 um got their peak values at noontime, well correlated with the mixing ratio of SO2 and the intensity of solar radiation in summer. While in winter, those in the same diameter range showed the main peaks during the traffic hours happened in the morning and evening.
基金supported by the Natural Science Foundation of Beijing Academy of Agriculture and Forestry Sciences(BAAFS),China(QNJJ201834)the National Natural Science Foundation of China(41471285 and 41671411)the National Key R&D Program of China(2017YFD0201501)
文摘The use of remote sensing to monitor nitrogen(N) in crops is important for obtaining both economic benefit and ecological value because it helps to improve the efficiency of fertilization and reduces the ecological and environmental burden.In this study,we model the total leaf N concentration(TLNC) in winter wheat constructed from hyperspectral data by considering the vertical N distribution(VND).The field hyperspectral data of winter wheat acquired during the 2013–2014 growing season were used to construct and validate the model.The results show that:(1) the vertical distribution law of LNC was distinct,presenting a quadratic polynomial tendency from the top layer to the bottom layer.(2) The effective layer for remote sensing detection varied at different growth stages.The entire canopy,the three upper layers,the three upper layers,and the top layer are the effective layers at the jointing stage,flag leaf stage,flowering stages,and filling stage,respectively.(3) The TLNC model considering the VND has high predicting accuracy and stability.For models based on the greenness index(GI),mND705(modified normalized difference 705),and normalized difference vegetation index(NDVI),the values for the determining coefficient(R2),and normalized root mean square error(nRMSE) are 0.61 and 8.84%,0.59 and 8.89%,and 0.53 and 9.37%,respectively.Therefore,the LNC model with VND provides an accurate and non-destructive method to monitor N levels in the field.
基金Project supported by the National Natural Science Foundation of China (No. 50238050).
文摘UNITANK is a biological wastewater treatment process that combines the advantages of traditional activated sludge process and sequencing batch reactor, which is divided into Tank A, B and C. In this study, the sludge distribution and its impact on performance of UNITANK were carried out in Liede Wastewater Plant (WWTP) of Guangzhou, China. Results showed that there was a strong affiliation between Tank A and B of the system in sludge concentration distribution. The initial sludge concentration in Tank A could present the sludge distribution of the whole system. The sludge distribution was mainly influenced by hydraulic condition. Unsteady sludge distribution had an impact on variations of substrates in reactors, especially in decisive reactor, and this could lead to failure of system. Settler could partially remove substrates such as COD and NO3-N, but there was adventure of sludge deterioration. The rational initial sludge concentration in Tank A should be 4000-6000 mg/L MLSS.
基金supported by National Natural Science Foundation of China (Grant No. 50476068)Jiangsu Provincial Postgraduate Cultivation Innovation Project of China (Grant No. CX07B_093z)
文摘The vortex pump is suitable for salt solution transportation. But the salt-out flow mechanism in the pump has not been understood fully. Salt-out layer formation and growth rate are closely related to crystal particle motion and concentration distribution. Study on the particle hydrodynamic characteristics in the pump volute becomes a key problem, because the crystal particles are mainly distributing in this zone after they enter the pump. Phase Doppler particle analyzer(PDPA) is used to measure the two-phase flow field in a model pump volute to get more understanding about the salt-out phenomenon. The crystal particle velocities are obtained in all three peripheral, radial and axial directions. Particle size and particle number density(PND) measurements are also performed in the experiment. Results are presented and discussed along the radial direction under different pump operating conditions, as well as various axial measurement positions. It is found that particle velocity gradient of peripheral component varies with the pump discharge. There is a turning point of relation between peripheral velocity component and discharge. Radial flow velocity curves look like a saddle shape and velocity magnitudes are changing greatly with the discharge. The non-equilibrium velocity feature between liquid and solid phase on this direction is also remarkable. Particles flow into the impeller at radial position R〈I, and the axial velocity component increases in this region. The particle size curve shows an open-up parabola distribution. The largest particles are distributing near the casing peripheral wall. As flow rate increases, accordingly PND increases. It also grows up in the axial-outward direction towards the suction cover. Crystal particle aggregation phenomenon can be revealed from the analysis of particle size and PND distribution, and the aggregation region is determined as well. Research results are helpful for optimal design of this kind of pump preventing salt-out.
基金supported by special fund for important and large scientific and technical projects from the Ministry of Communications (Grant No. 201132874660)funds from Nanjing Hydraulic Research Institute (Grant No. Y210001)
文摘In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissipation of spilling breaking wave and hydraulic jump, formulas are proposed to predict time averaged suspended sediment concentration under both non-breaking and breaking waves. Assuming that the sediment diffusion coefficient, which is related with energy dissipation, is proportional to water depth, formulas are proposed to predict close-to-bed suspended sediment concentration and vertical distribution of suspended sediment under spilling breaking waves, and the prediction shows a good agreement with the measurement.
文摘A research work was conducted to investigate the variations in concentration and distribution of health-related elements affected by environmental and genotypic differences in rice grains. The grain of Xieqingzao B (indica rice variety) and Xiushui 110 (japonica rice variety) were divided into: hull, bran and milled rice, based on the conventional rice consumption and process. Xieqingzao B was grown at four different locations, and at one location, it was planted in the same field and season as Xiushui 110. In addition, another four indica and four japonica varieties were cultivated in the same field and time to analyze the elements in milled rice. The average concentrations of total P and phytic acid P were the highest in the bran, followed by milled rice and hull; Zn, K, Mg, and As concentrations were the highest in bran, followed by hull and milled rice, while Fe, Ca, and Cu concentrations were the highest in the hull, but similar in bran and milled rice. The result indicated that genotype and environment significantly affected the concentrations of all the tested elements, while the distribution of the above elements in grains was not in the same order as concentration. Moreover, all the elements except 97,7% of Cu and 93.2% of Fe was deposited in the hull on average, were mostly distributed either in the bran (37.3% and 57.7% for K and phytic acid P) or in milled rice (41.7%, 42.6%, 40.3%, 49.8% for Zn, Mg, As, total P, respectively).
基金supported by the National Basic Research Program (973 program) of China (2011CB503802)Gong-Yi Program of China Ministry of Environmental Protection (201209008)the Program for New Century Excellent Talents in University (NCET-09-0314)
文摘Objective To estimate the frequency of daily average PM10 concentrations exceeding the air quality standard (AQS) and the reduction of particulate matter emission to meet the AQS from the statistical properties (probability density functions) of air pollutant concentration. Methods The daily PM10 average concentration in Beijing, Shanghai, Guangzhou, Wuhan, and Xi'an was measured from 1 January 2004 to 31 December 2008. The PM10 concentration distribution was simulated by using the Iognormal, Weibull and Gamma distributions and the best statistical distribution of PM10 concentration in the 5 cities was detected using to the maximum likelihood method. Results The daily PM10 average concentration in the 5 cities was fitted using the Iognormal distribution. The exceeding duration was predicted, and the estimated PMlo emission source reductions in the 5 cities need to be 56.58%, 93.40%, 80.17%, 82.40%, and 79.80%, respectively to meet the AO, S. Conclusion Air pollutant concentration can be predicted by using the PM10 concentration distribution, which can be further applied in air quality management and related policy making.
文摘Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.
基金supported by Natural Science Founda-tion of China(Nos.41375162,41175017,41175140)China Special Fund for Meteorological Research in the Public Interest(Nos.GYHY201006012,GYHY201106025)
文摘The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP from January of 2009 to February of 2010 in the Taklimakan Desert hinterland. Results show that: (1) The mass concentration value of 80 m PMl0 was higher, but PM2.5 and PM1.0 concentrations at 80 m was obviously lower than 4 m PMl0, and the value of 80 m PM1.0 mass concentration was the lowest. (2) The PM mass concentrations gradually decreased from night to sunrise, with the lowest concentration at 08:00, with the mass concentration gradually increased, up to the highest concentration around 18:00, and then decreased again. It was exactly the same with the changes of wind speed. (3) The high monthly average mass concentration of TSP mainly appeared from March to September, and the highest concentration was in April and May, subsequently gradually decreased. Also, March-September was a period with high value area of PM monthly average mass concentration, with the highest monthly average mass concentration of 846.0 p.g/m3 for 4 m PM^0 appeared in May. The concentration of PM10 was much higher than those of PM2.5 and PM1.0 at 80 m. There is a small difference between the concentration of PM2.5 and PM~ 0. Dust weather was the main factor which influenced the concentration content of the different diameter dust aerosol, and the more dust weather days, the higher content of coarse particle, conversely, fine particle was more. (4) The mass concentration of different diameter aerosols had the following sequence during dust weather: clear day 〈 blowing dust 〈 floating and blowing dust 〈 sandstorm. In different dust weather, the value of PM^o/TSP in fine weather was higher than that in floating weather, and much higher than those in blowing dust and sandstorm weather. (5) During the dust weather process, dust aerosol concentration gradually decreased with particle size decreasing. The dust aerosol mass concentration at different heights and diameter would have a peak value area every 3-4 days according to the strengthening process of dust weather.
基金Project (Nos. 50079025 and 40231017) supported by the National Natural Science Foundation of China
文摘A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic ve- locity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra- diction between the lower limit of the integral and that of velocity distribution exists.
基金sponsored by the National Natural Science Foundation of China [grant number 41530427 and41875172]supported by the demonstration project of artificial precipitation enhancement and hail suppression operation technology at the eastern side of Taihang Mountains [Grant No.hbrywcsy-2017-2]
文摘The number concentrations and drop size distributions(DSDs)of warm-rain hydrometeors play an important role in the simulation of microphysical processes.To evaluate the performance of the WDM6 scheme,which predicts the cloud number concentration(Nc)explicitly in aspects of warm-rain hydrometeors number concentrations and DSDs,the simulation of the WDM6 scheme is compared with airborne observations of a flight trial,as well as with the simulations of the Thompson scheme and Morrison scheme.Results show that the WDM6 scheme produces smaller(larger)cloud(rain)number concentrations and wider cloud DSDs compared to the observations,with the largest biases at upper levels of stratiform cloud(SC).The Thompson scheme and the Morrison scheme,both of which set the Nc as a constant,compare better to the observations than the WDM6 scheme in aspects of Nc and DSD.Sensitivity tests of the initial cloud condensation nuclei(CCN)number concentration(CCN0)of the WDM6 scheme show that a better choice of the initial CCN0 may improve the simulation of convective cloud but helps little in terms of SC.The simulation of rain number concentration and DSD is not sensitive to the CCN0 in the WDM6 scheme.
文摘Blood alcohol concentration (BAC) differs greatly among individuals, even when people of the same sex and age drink alcohol under the same drinking conditions. In this study, we investigated the main factors involved in the internal reg-ulation of individual differences in BAC, focusing on the alcohol dehydrogenase 1B (ADH1B) genotype, blood acetal-dehyde concentration (BAcH), amount of habitual alcohol consumption, pharmacokinetic parameters of BAC, distribution volume of ethanol (Vd), and gastric emptying rate (GER) under the same drinking conditions. Twenty healthy Japanese males aged between 40 and 59 years old and having the aldehyde dehydrogenase 2 (ALDH2) genotype of ALDH 2*1/*2 were recruited for this study. The subjects were given 0.32 g ethanol/kg body weight in the form of commercially available beer (5%, v/v). The results showed that BAC-max differed greatly among individuals with a more than two-fold variation. When the BAC-time curve was compared among ADH1B genotypes (ADH1B*1/*1, *1/*2, and *2/*2), there were no differences in BAC among the genotypes. Although BAcH, monthly alcohol consumption, elimination rate of blood ethanol (β value) and ethanol disappearance rate from the body (EDR) can affect BAC, all of them had no correlations with BAC-max. However, Vd (liter/kg), ΔPlasma glucose concentration (ΔPGC = PGC30 min ? PGC0 min) and the serum concentration of gastric inhibitory polypeptide (GIP) did correlate with BAC-max. Model 2 in multiple linear regression analysis showed the optimal model for Vd and GIP with positive correlations with BAC-max. As GIP and ΔPGC are both reflected by gastric emptying rate (GER), we concluded that the individual differences in BAC after moderate drinking are mainly regulated by GER together with Vd. These findings demonstrate that together with body water content, the gastrointestinal tract plays an important role in the regulation of individual differences in BAC, involving first pass metabolism of ethanol.
基金supported by the National Natural Science Foundation of China(Grant No.49976020).
文摘Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the downtown campus of Ocean University of China, Qingdao, China. The concentrations of Al, Fe, Mn, Cu, Pb and Zn were determined by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The monthly variability of the mass concentrations of aerosol particles and the concentrations of trace metals are presented and discussed. The distribution pattern of these metals in PM10 and TSP is also discussed. During the observation period, the mass concentration of PM10 at this site ranged from 13.80 to 306.42μgm-3 , while that of TSP ranged from 31.02 to 568.82μgm-3. Both PM10 and TSP reached their highest concentrations in springtime, while the lowest values occurred in summertime. The concentrations of crustal metals followed the same variation pattern, while those of anthropogenic metals did not. A closer examination led to the conclusion that anthropogenic metals are mainly from local sources. The average concentration ratios of anthropogenic metals in PM10 to TSP were higher than the average mass ratio of PM10 to TSP, suggesting that there was a higher proportion of anthropogenic metals on smaller particles although there were a few exceptions. For crustal metals, however, the metal concentration ratios were close to the particle mass ratio, indicating that the distribution of crustal metals was much more homogeneous on aerosol particles with different sizes. The correlation analysis indicated that Al, Fe and Mn were originated from similar sources and were mainly controlled by the particle mass, while Cu, Pb and Zn were predominated by local anthropogenic sources, with Pb and Zn having similar origins.
文摘Mercury species in water column, sediment and fish from the Hg-contaminated Baihua Reservoir were measured by trap pre-concentration and CVAFS and CVAAS detection methods. The results showed that the highest average total Hg concentration is up to {73.36} ng/L in the water column, {186.7} ng/L in pore water of surface sediment in the Baihua Reservoir. The total mercury concentrations in the sediments range from {0.87} to {33.74} mg/kg. This suggests that sediment re-suspending and Hg input from the upstream organochemical plant are the main mercury sources of water body for this reservoir. In addition, the possible reason why mercury is low in fish is that the low DOC and high pH are infavarable to methylmercury formation or absorption by fish.
文摘To investigate the biobeical effects of terbium (Tb), male mice were intravenously ad ministered with TbCl3 at 10, 25, or 50 mg Tb/kg. Time-course and dose-related changes in organ distributions of Tb were determined . More than 95 % of the Tb in blood was in plas ma, and the concentrations decreased rapidly. Contrary to normal pharmacokinetics, Tb con centrations in plasma were higher in the 10 mg/kg group than in the 50 mg/kg group. The concentrations after injection of 25 mg/kg were between 10 and 50 mg/kg injections. Tb was incorporated mainly in liver, lung, and spleen. In all groups more than 80% of Tb adminis tered were found in these three organs. Disappearance of Tb in these organs was very slow.Tb was also found in kidney, heart and other organs. Coincidentally, it was found that the Ca concentration was increased in organs in which Tb was incorporated. After administration of Tb (50 mg/kg) the Ca concentration, compared to the controls, was 70-fold in spleen, 20-fold in lung, and 6-fold in liver. There were highly positive correlations between Tb and Ca concentrations in organs. Excretion of Tb in urine was 0. 15 ~ 0. 3 % and that in feces was 1.7~12. 5 % for up to 7 days. These results indicate that liver, lung, and spleen are the main target organs of Tb administered intravenously, and that the increase in Ca concentrations is one of the important biological effects of Tb in target organs
文摘An electrochemical probe measurement system for detecting an electrogenerated etchant in solution is developed.Concentration distribution of electrogenerated etchant bromine as close as 8 micrometer to the surface of macrodisk is studied quantitatively.