Rare earth ions(RE^(3+))-doped double perovskites have attracted tremendous attention for its fascinating optical properties.Nevertheless,RE^(3+)generally exhibits poor photoluminescence quantum yield(PLQY)for their p...Rare earth ions(RE^(3+))-doped double perovskites have attracted tremendous attention for its fascinating optical properties.Nevertheless,RE^(3+)generally exhibits poor photoluminescence quantum yield(PLQY)for their parity-forbidden 4f-4f transition and the low doping concentration.Herein,we reported Sb^(3+)/Sm^(3+)-codoped rare earth-based double perovskite Cs_(2)Na Lu Cl_(6)that enables efficient visible and nearinfrared(NIR)emission,which stems from self-trapped exciton(STE)and Sm^(3+),respectively.Benefit from up to 72.89%energy transfer efficiency from STE to Sm^(3+)and high doping concentrations due to similar ionic activity between Sm^(3+)and Lu^(3+),thus eruptive PLQY of 74.58%in the visible light region and 23.12%in the NIR light region can be obtained.Moreover,Sb^(3+)/Sm^(3+)-codoped Cs_(2)Na Lu Cl_(6)exhibits tunable emission characteristic in the visible light region under different excitation wavelengths,which can change from blue emission(254 nm excitation)to white emission(365 nm excitation).More particularly,only the NIR emission can be captured by the NIR camera when a 700 nm cutoff filter is added.The excellent stability and unique optical properties of Sb^(3+)/Sm^(3+)-codoped Cs_(2)Na Lu Cl_(6)enable us to demonstrate its applications in NIR light-emitting diode,triple-mode fluorescence anti-counterfeiting and information encryption.These findings provide new inspiration for the application of rare earth-based double perovskite in optoelectronic devices.展开更多
Cr^(3+)-activated phosphors with adjustable near-infrared(NIR)emission have attracted considerable attention due to their diverse applications across various fields.While modifying the emission wavelength of Cr^(3+)ca...Cr^(3+)-activated phosphors with adjustable near-infrared(NIR)emission have attracted considerable attention due to their diverse applications across various fields.While modifying the emission wavelength of Cr^(3+)can be achieved by adjusting its coordination environment,the parity-forbidden d-d transition presents a challenge by limiting absorption and resulting in a low external quantum efficiency(EQE)in Cr^(3+)-doped phosphors.Moreover,longer emission wavelengths often coincide with reduced thermal stability.To address these issues,energy transfer from a sensitizer to Cr^(3+)has been proposed as a strategy to enhance both EQE and thermal stability of NIR emission.The selection of an appropriate host structure is crucial.In this study,a garnet structure,Ca_(2)LuMgScSi_(3)O_(12),was identified as a promising candidate for achieving efficient broadband NIR emission under blue light excitation.Specifically,Ca_(2)LuMgScSi_(3)O_(12):Ce^(3+)exhibited a yellow emission with exceptional internal quantum efficiency and EQE of up to 94.6%and 64.8%,respectively.By leveraging efficient energy transfer from Ce^(3+)to Cr^(3+),the Ca_(2)LuMgScSi_(3)-O_(12):Ce^(3+),Cr^(3+)phosphors exhibited tunable yellow to NIR emission.Notable,the highest EQE recorded for Ca_(2)LuMgScSi_(3)O_(12):Ce^(3+),Cr^(3+)was 56.9%,significantly surpassing that of the Cr^(3+)single-doped counterpart.Furthermore,the co-doped phosphor demonstrated thermal stability comparable to that of Ce^(3+)single-doped phosphor.Of particular significance,the developed prototype pc-LED emitted a combination of broadband white and NIR light,demonstrating potential applications in solar-like lighting,food analysis,and biomedical imaging.展开更多
With the rapid growth of optical communications traffic,the demand for broadband optical amplifiers continues to increase.It is necessary to develop a gain medium that covers more optical communication bands.We precip...With the rapid growth of optical communications traffic,the demand for broadband optical amplifiers continues to increase.It is necessary to develop a gain medium that covers more optical communication bands.We precipitated PbS quantum dots(QDs) and Ba F_(2):Tm^(3+) nanocrystals (NCs) in the same glass to form two independent emission centers.The Ba F_(2)NCs in the glass can provide a crystal field environment with low phonon energy for rare earth (RE) ions and prevent the energy transfer between RE ions and PbS QDs.By adjusting the heat treatment schedule,the emission of the two luminescence centers from PbS QDs and Tm^(3+) ions perfectly splices and covers the ultra-broadband near-infrared emission from 1200 nm to 2000 nm with bandwidth over 430 nm.Therefore,it is expected to be a promising broadband gain medium for fiber amplifiers.展开更多
Heptamethine cyanine dyes,typified by indocyanine green,have been extensively employed as bioimaging indicators and theranostic agents.Significant efforts have been made to develop functional heptamethine cyanine dyes...Heptamethine cyanine dyes,typified by indocyanine green,have been extensively employed as bioimaging indicators and theranostic agents.Significant efforts have been made to develop functional heptamethine cyanine dyes with outstanding bioimaging and theranostic utilities.In this work,we rationally designed and successfully developed a novel indolium-like heptamethine cyanine dye by installing indolium-derived polycyclic aromatic hydrocarbons on the terminal ends of a conjugated polyene backbone.This dye showed excellent photostability and showed bright fluorescent emission in the second near-infrared(NIR-Ⅱ)window with a peak at approximately 1120 nm.Such long wavelength emission prompted a superior bioimaging resolution in vivo.In particular,this NIR-Ⅱ dye had the remarkable capability of marking the blood vessels of the hindlimbs,abdomens,and brains of mice.More significantly,this dye involved a typical indolium-like heptamethine skeleton and exhibited two strong absorption bands in the 700–1300 nm NIR range,which endowed it with an intrinsic tumor-targeting capability and a high photothermal conversion efficiency(up to 68.2%),serving for the photothermal therapy of tumors under the guidance of NIR-Ⅱ fluorescence imaging.This work provides an efficient design strategy for achieving indolium-like heptamethine cyanine dyes with further NIR-Ⅱ emission.展开更多
A mild one-step radical-to-radical synthetic strategy has been developed to directly produce a new family of diarylamine-substituted tris(2,4,6-trichlorophenyl)methyl(TTM)radicals TTM-DPA,TTM-DBPA,and TTM-DFA.The obta...A mild one-step radical-to-radical synthetic strategy has been developed to directly produce a new family of diarylamine-substituted tris(2,4,6-trichlorophenyl)methyl(TTM)radicals TTM-DPA,TTM-DBPA,and TTM-DFA.The obtained TTM radical derivatives are extremely stable during chromatography purification and long-term storage in the solid state.展开更多
Aggregation-induced emission(AIE)luminogens(AIEgens)with high brightness in aggregates exhibit great potentials in biological imaging,but these AIEgens are seldom applied in super-resolution biological imaging,especia...Aggregation-induced emission(AIE)luminogens(AIEgens)with high brightness in aggregates exhibit great potentials in biological imaging,but these AIEgens are seldom applied in super-resolution biological imaging,especially in the imaging by using the structural illumination microscope(SIM).Based on this consideration,we synthesized the donor-acceptor typed AIEgen of DTPA-BTN,which not only owns high brightness in the near-infrared(NIR)emission region from 600 nm to 1000 nm(photoluminescence quantum yield,PLQYs=11.35%),but also displays excellent photo-stability.In addition,AIE nanoparticles based on 4,7-ditriphenylamine-[1,2,5]-thiadiazolo[3,4-c]pyridine(DTPA-BTN)were also prepared with highly emissive features and excellent biocompatibility.Finally,the developed DTPA-BTN-based AIE nanoparticles were applied in the super-resolution cellular imaging via SIM,where much smaller full width at half-maximum values and high signal to noise ratios were obtained,indicating the superior imaging resolution.The results here imply that highly emissive AIEgens or AIE nanoparticles can be promising imaging agents for super-resolution imaging via SIM.展开更多
Organic chromic materials that respond to external stimuli, especially in the solid state, have sparked extensive interest owing to their potential use as smart materials. In particular, the availability of chromic ma...Organic chromic materials that respond to external stimuli, especially in the solid state, have sparked extensive interest owing to their potential use as smart materials. In particular, the availability of chromic materials, which emit fluorescence or phosphorescence in the deep penetrating, near-infrared(NIR)region, has led to great improvements in imaging. Various methods that were commonly applied to construct chromic materials, have been reformed to develop the novel type of compounds, and some have received rewards with excellent fingdings. Relevant research achievements of practical applications have showed their potential with the changes that locate in the NIR region, while further in-depth explorations about the inherent chromic chromism are underway. In this review, several representative studies, which have led the development of responsive organic chromic materials with near-infrared emission, will be discussed.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
Broadband near-infrared(NIR)light sources play a critical role in widespread applications such as advanced spectroscopy analysis and nondestructive testing.One of the most promising techniques is the fabrication of br...Broadband near-infrared(NIR)light sources play a critical role in widespread applications such as advanced spectroscopy analysis and nondestructive testing.One of the most promising techniques is the fabrication of broadband NIR phosphor-converted light emitting diode(pc-LED).However,the purposeful design of a tunable ultra-broadband NIR-emitting phosphor in a single host is still a challenge.In this work,Ga_(2)GeO_(5) with two sites of six-coordinated[Ga1O_(6)]and five-coordinated[Ga2O_(5)]is chosen to host Cr^(3+),successfully producing tunable broadband NIR luminescence(680-1350 nm).It can be tuned largely from 828 to 970 nm with the full-width at half maximum(FWHM)varied from 208 to 258 nm just by simply adjusting the Cr^(3+)-doping content.The tailoring of the Cr^(3+)NIR spectral emission is ascertained to the site occupation preference and competition.The encapsulation of a prototype of NIR pc-LED with an output power of 29.5mW@390 mA is conducted for the implementation of night-vision application.This work provides a novel broadband NIR phosphor by Cr^(3+)-doping in both the sixand five-coordination field,meanwhile,further demonstrating the feasibility of discovering new host material with more than one crystallographic site for Cr^(3+)to trigger tunable broadband NIR emission.展开更多
Bismuth(Bi)-doped photonic materials, which exhibit broadband near-infrared(NIR) luminescence(1000–1600 nm), are evolving into interesting gain media. However, the traditional methods have shown their limitations in ...Bismuth(Bi)-doped photonic materials, which exhibit broadband near-infrared(NIR) luminescence(1000–1600 nm), are evolving into interesting gain media. However, the traditional methods have shown their limitations in enhancing Bi NIR emission, especially in the microregion. Consequently, the typical NIR emission has seldom been achieved in Bi-doped waveguides, which highly restricts the application of Bi-activated materials.Here, superbroadband Bi NIR emission is induced in situ instantly in the grating region by a femtosecond(fs)laser inside borosilicate glasses. A series of structural and spectroscopic characterizations are summoned to probe the generation mechanism. And we show how this novel NIR emission in the grating region can be enhanced significantly and erased reversibly. Furthermore, we successfully demonstrate Bi-activated optical waveguides.These results present new insights into Bi-doped materials and push the development of broadband waveguide amplification.展开更多
Lanthanide ions have attracted great attention due to their distinct photonic properties.The optoelectronic properties and device performance are greatly affected by the interfacial coupling between the layered van de...Lanthanide ions have attracted great attention due to their distinct photonic properties.The optoelectronic properties and device performance are greatly affected by the interfacial coupling between the layered van der Waals heterostructure,fabricated with two or more transition metal dichalcogenide(TMD)layers.In this work,lanthanide-doped WS2/MoS2 layered heterostructures have been constructed through two synthesis steps.The doped thin films are highly textured nanosheets on wafers.Importantly,the as-prepared heterostructure exhibits efficient near-infrared emission in the range of the telecommunication window,owing to energy transfer between lanthanide ions in the two TMD layers.The use of the layered heterostructure allows the decrease of deleterious cross-relaxation due to homogeneous doping or concentration quenching.The energy transfer process was further elaborated in this work.The results suggest that lanthanide ions can effectively extend the emission band of TMD thin films and their heterostructures.The doped TMD heterostructure is highly favourable for constructing atomically thin near-infrared photonic devices.展开更多
Yb^(3+)-doped phosphors have characteristic near-infrared(NIR)emissions,but their applications in phosphor-converted light-emitting-diodes(pc-LEDs)and Si solar cells are limited due to their mismatching excitation spe...Yb^(3+)-doped phosphors have characteristic near-infrared(NIR)emissions,but their applications in phosphor-converted light-emitting-diodes(pc-LEDs)and Si solar cells are limited due to their mismatching excitation spectra.Here,we selected nitride La3 Si6 N11(LSN)as host material to achieve Yb^(3+)NIR emission upon low-energy charge transfer(CT)excitation.The obtained phosphor LSN:Yb^(3+)has a broad CT excitation band ranging from 250 to 500 nm and narrowband NIR emissions ranging from 950 to 1100 nm centered at 983 nm.On the basis of spectral data,the vacuum referred binding energies(VRBE)schemes are constructed to locate energy levels of all lanthanide ions in LSN.We also fabricated NIR pc-LED device using 395 nm LED chip to demonstrate the potential applications of LSN:Yb^(3+)phosphors.展开更多
China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exi...China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst...As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.展开更多
Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties...Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.展开更多
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ...Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.展开更多
BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and prov...BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.展开更多
Biogenic isoprene is an important precursor of tropospheric ozone(O_(3)).Here,a coupled chemistry-vegetation model was used to quantify the contributions of isoprene emissions to surface O_(3)pollution on the global s...Biogenic isoprene is an important precursor of tropospheric ozone(O_(3)).Here,a coupled chemistry-vegetation model was used to quantify the contributions of isoprene emissions to surface O_(3)pollution on the global scale during 2000-2019.The biogenic isoprene emissions showed high values in mid-low latitudes and seasonal peaks in the summer hemispheres.They promote global surface O_(3)concentrations by 1.75 ppbv annually with regional hotspots of 4.39 ppbv(8.8%)in China and 5.36 ppbv(11.1%)in the U.S.in boreal summer.In the past two decades,isoprene emissions increased by 1.32 TgC yr^(−1)(0.67%yr^(−1))in the Northern Hemisphere but decreased by 0.71 TgC yr^(−1)(0.44%yr^(−1))in the Southern Hemisphere.Such changes of isoprene made opposite contributions to the surface O_(3)trend,with 0.26 ppbv yr^(−1)in eastern China but−0.32 ppbv yr^(−1)in the southeastern U.S.due to the changes in the background regime of chemical reactions.The impact of anthropogenic changes on the O_(3)trend is consistent with that of biogenic isoprene,but two to four times stronger in magnitude.This study revealed that the effective control of anthropogenic NO_(x)emissions could mitigate regional O_(3)pollution even with the increased isoprene emissions under global warming.展开更多
The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu...The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.展开更多
基金Scientific and Technological Bases and Talents of Guangxi(Nos.Guike AD23026119,AD21238027)the Guangxi National Science Fundation Project(No.2020GXNSFDA238004)the“Guangxi Bagui Scholars”foundation for financial support。
文摘Rare earth ions(RE^(3+))-doped double perovskites have attracted tremendous attention for its fascinating optical properties.Nevertheless,RE^(3+)generally exhibits poor photoluminescence quantum yield(PLQY)for their parity-forbidden 4f-4f transition and the low doping concentration.Herein,we reported Sb^(3+)/Sm^(3+)-codoped rare earth-based double perovskite Cs_(2)Na Lu Cl_(6)that enables efficient visible and nearinfrared(NIR)emission,which stems from self-trapped exciton(STE)and Sm^(3+),respectively.Benefit from up to 72.89%energy transfer efficiency from STE to Sm^(3+)and high doping concentrations due to similar ionic activity between Sm^(3+)and Lu^(3+),thus eruptive PLQY of 74.58%in the visible light region and 23.12%in the NIR light region can be obtained.Moreover,Sb^(3+)/Sm^(3+)-codoped Cs_(2)Na Lu Cl_(6)exhibits tunable emission characteristic in the visible light region under different excitation wavelengths,which can change from blue emission(254 nm excitation)to white emission(365 nm excitation).More particularly,only the NIR emission can be captured by the NIR camera when a 700 nm cutoff filter is added.The excellent stability and unique optical properties of Sb^(3+)/Sm^(3+)-codoped Cs_(2)Na Lu Cl_(6)enable us to demonstrate its applications in NIR light-emitting diode,triple-mode fluorescence anti-counterfeiting and information encryption.These findings provide new inspiration for the application of rare earth-based double perovskite in optoelectronic devices.
基金financially supported by Changsha Municipal Natural Science Foundation(kq2402153)the Scientific Research Foundation of Hunan Provincial Education Department(22A0030 and 21A0455)the National Students’Platform for Innovation and Entrepreneurship Training Program(S202310542066)。
文摘Cr^(3+)-activated phosphors with adjustable near-infrared(NIR)emission have attracted considerable attention due to their diverse applications across various fields.While modifying the emission wavelength of Cr^(3+)can be achieved by adjusting its coordination environment,the parity-forbidden d-d transition presents a challenge by limiting absorption and resulting in a low external quantum efficiency(EQE)in Cr^(3+)-doped phosphors.Moreover,longer emission wavelengths often coincide with reduced thermal stability.To address these issues,energy transfer from a sensitizer to Cr^(3+)has been proposed as a strategy to enhance both EQE and thermal stability of NIR emission.The selection of an appropriate host structure is crucial.In this study,a garnet structure,Ca_(2)LuMgScSi_(3)O_(12),was identified as a promising candidate for achieving efficient broadband NIR emission under blue light excitation.Specifically,Ca_(2)LuMgScSi_(3)O_(12):Ce^(3+)exhibited a yellow emission with exceptional internal quantum efficiency and EQE of up to 94.6%and 64.8%,respectively.By leveraging efficient energy transfer from Ce^(3+)to Cr^(3+),the Ca_(2)LuMgScSi_(3)-O_(12):Ce^(3+),Cr^(3+)phosphors exhibited tunable yellow to NIR emission.Notable,the highest EQE recorded for Ca_(2)LuMgScSi_(3)O_(12):Ce^(3+),Cr^(3+)was 56.9%,significantly surpassing that of the Cr^(3+)single-doped counterpart.Furthermore,the co-doped phosphor demonstrated thermal stability comparable to that of Ce^(3+)single-doped phosphor.Of particular significance,the developed prototype pc-LED emitted a combination of broadband white and NIR light,demonstrating potential applications in solar-like lighting,food analysis,and biomedical imaging.
基金This work was financially supported by the Key R&D Program of Guangzhou(No.202007020003)National Natural Science Foundation of China(Nos.62122027,52002128,62075063,51772101,and 51872095)+2 种基金China Postdoctoral Science Foundation(Nos.2020M672621 and 2021M691054)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X137)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology(No.2020KF-19)。
文摘With the rapid growth of optical communications traffic,the demand for broadband optical amplifiers continues to increase.It is necessary to develop a gain medium that covers more optical communication bands.We precipitated PbS quantum dots(QDs) and Ba F_(2):Tm^(3+) nanocrystals (NCs) in the same glass to form two independent emission centers.The Ba F_(2)NCs in the glass can provide a crystal field environment with low phonon energy for rare earth (RE) ions and prevent the energy transfer between RE ions and PbS QDs.By adjusting the heat treatment schedule,the emission of the two luminescence centers from PbS QDs and Tm^(3+) ions perfectly splices and covers the ultra-broadband near-infrared emission from 1200 nm to 2000 nm with bandwidth over 430 nm.Therefore,it is expected to be a promising broadband gain medium for fiber amplifiers.
基金supported by the National Basic Research Foundation of China(no.2017YFA0505202)financial support from the National Natural Science Foundation of China(nos.21676113 and 21772054)+6 种基金the Distinguished Young Scholar of Hubei Province(no.2018CFA079)the 111 Project B17019the Scholar Support Program of CCNU(no.0900-31101090002)financial support from A*STAR under its Advanced Manufacturing and Engineering Program(no.A2083c0051)the Ministry of Education,Singapore(no.MOE-MOET2EP10120-0007)supported by grants from the 619 National Creative Research Initiative programs of the 620 National Research Foundation of Koreafunded by 621 the Korean government(no.2021R1A6A1A10039823).
文摘Heptamethine cyanine dyes,typified by indocyanine green,have been extensively employed as bioimaging indicators and theranostic agents.Significant efforts have been made to develop functional heptamethine cyanine dyes with outstanding bioimaging and theranostic utilities.In this work,we rationally designed and successfully developed a novel indolium-like heptamethine cyanine dye by installing indolium-derived polycyclic aromatic hydrocarbons on the terminal ends of a conjugated polyene backbone.This dye showed excellent photostability and showed bright fluorescent emission in the second near-infrared(NIR-Ⅱ)window with a peak at approximately 1120 nm.Such long wavelength emission prompted a superior bioimaging resolution in vivo.In particular,this NIR-Ⅱ dye had the remarkable capability of marking the blood vessels of the hindlimbs,abdomens,and brains of mice.More significantly,this dye involved a typical indolium-like heptamethine skeleton and exhibited two strong absorption bands in the 700–1300 nm NIR range,which endowed it with an intrinsic tumor-targeting capability and a high photothermal conversion efficiency(up to 68.2%),serving for the photothermal therapy of tumors under the guidance of NIR-Ⅱ fluorescence imaging.This work provides an efficient design strategy for achieving indolium-like heptamethine cyanine dyes with further NIR-Ⅱ emission.
基金supported by the National Key Research and Development Program of China(nos.2018YFA0703200 and 2018YFA0209401)the National Natural Science Foundation of China(nos.61890940,52073063,51903052,and 21733003)+1 种基金the Shanghai Pujiang Project(no.19PJ1400700),the Natural Science Foundation of Shanghai(no.21ZR1409600)the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning.
文摘A mild one-step radical-to-radical synthetic strategy has been developed to directly produce a new family of diarylamine-substituted tris(2,4,6-trichlorophenyl)methyl(TTM)radicals TTM-DPA,TTM-DBPA,and TTM-DFA.The obtained TTM radical derivatives are extremely stable during chromatography purification and long-term storage in the solid state.
基金This work was supported by the National Natural Science Foundation of China(Nos.21975197,21674085,51603165)the Young Talent Fund of University Association for Science and Technology in Shaanxi Province,China(No.20180601)+3 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JM-040)the Key Laboratory Construction Program of Xi’an Municipal Bureau of Science and Technology,China(No.201805056ZD7CG40)the Innovation Capability Support Program of Shaanxi Province,China(Nos.2018PT-28,2019PT-05)school of Materials Science and Engineering,Jiangsu Engineering Laboratory of Light-Electricity-Heart Energy-coverting Materials and Applications,China(No.GDRGCS2019001).
文摘Aggregation-induced emission(AIE)luminogens(AIEgens)with high brightness in aggregates exhibit great potentials in biological imaging,but these AIEgens are seldom applied in super-resolution biological imaging,especially in the imaging by using the structural illumination microscope(SIM).Based on this consideration,we synthesized the donor-acceptor typed AIEgen of DTPA-BTN,which not only owns high brightness in the near-infrared(NIR)emission region from 600 nm to 1000 nm(photoluminescence quantum yield,PLQYs=11.35%),but also displays excellent photo-stability.In addition,AIE nanoparticles based on 4,7-ditriphenylamine-[1,2,5]-thiadiazolo[3,4-c]pyridine(DTPA-BTN)were also prepared with highly emissive features and excellent biocompatibility.Finally,the developed DTPA-BTN-based AIE nanoparticles were applied in the super-resolution cellular imaging via SIM,where much smaller full width at half-maximum values and high signal to noise ratios were obtained,indicating the superior imaging resolution.The results here imply that highly emissive AIEgens or AIE nanoparticles can be promising imaging agents for super-resolution imaging via SIM.
基金the National Natural Science Foundation of China (Nos. 21676113, 21402057, 21772054, 21472059)Distinguished Young Scholar of Hubei Province (No. 2018CFA079)+5 种基金Youth Chen-Guang Project of Wuhan (No. 2016070204010098) for the financial supportsupported by the 111 Project (No. B17019)the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology (Shenzhen), the State Key Laboratory of Materials-Oriented Chemical Engineering (No. KL17-10)Open Project Fund of Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Yanbian University (No. NRFM201701)Ministry of Education, the foundation of Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University (No. JDSJ2017-07)self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (No. CCNU18TS012)
文摘Organic chromic materials that respond to external stimuli, especially in the solid state, have sparked extensive interest owing to their potential use as smart materials. In particular, the availability of chromic materials, which emit fluorescence or phosphorescence in the deep penetrating, near-infrared(NIR)region, has led to great improvements in imaging. Various methods that were commonly applied to construct chromic materials, have been reformed to develop the novel type of compounds, and some have received rewards with excellent fingdings. Relevant research achievements of practical applications have showed their potential with the changes that locate in the NIR region, while further in-depth explorations about the inherent chromic chromism are underway. In this review, several representative studies, which have led the development of responsive organic chromic materials with near-infrared emission, will be discussed.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
基金financially supported by the National Natural Science Foundation of China (No.51802045)Guangzhou basic and applied basic research project (No.202102020871)。
文摘Broadband near-infrared(NIR)light sources play a critical role in widespread applications such as advanced spectroscopy analysis and nondestructive testing.One of the most promising techniques is the fabrication of broadband NIR phosphor-converted light emitting diode(pc-LED).However,the purposeful design of a tunable ultra-broadband NIR-emitting phosphor in a single host is still a challenge.In this work,Ga_(2)GeO_(5) with two sites of six-coordinated[Ga1O_(6)]and five-coordinated[Ga2O_(5)]is chosen to host Cr^(3+),successfully producing tunable broadband NIR luminescence(680-1350 nm).It can be tuned largely from 828 to 970 nm with the full-width at half maximum(FWHM)varied from 208 to 258 nm just by simply adjusting the Cr^(3+)-doping content.The tailoring of the Cr^(3+)NIR spectral emission is ascertained to the site occupation preference and competition.The encapsulation of a prototype of NIR pc-LED with an output power of 29.5mW@390 mA is conducted for the implementation of night-vision application.This work provides a novel broadband NIR phosphor by Cr^(3+)-doping in both the sixand five-coordination field,meanwhile,further demonstrating the feasibility of discovering new host material with more than one crystallographic site for Cr^(3+)to trigger tunable broadband NIR emission.
基金Natural Science Foundation of Guangdong Province(2018B030308009)National Natural Science Foundation of China(NSFC)(51672085)+3 种基金Program for Innovative Research Team in University of Ministry of Education of China(IRT_17R38)Ministry of Education of the People's Republic of China(MOE)Local Innovative Research Team Project of "Pearl River Talent Plan"(2017BT01X137)Fundamental Research Funds for the Central Universities
文摘Bismuth(Bi)-doped photonic materials, which exhibit broadband near-infrared(NIR) luminescence(1000–1600 nm), are evolving into interesting gain media. However, the traditional methods have shown their limitations in enhancing Bi NIR emission, especially in the microregion. Consequently, the typical NIR emission has seldom been achieved in Bi-doped waveguides, which highly restricts the application of Bi-activated materials.Here, superbroadband Bi NIR emission is induced in situ instantly in the grating region by a femtosecond(fs)laser inside borosilicate glasses. A series of structural and spectroscopic characterizations are summoned to probe the generation mechanism. And we show how this novel NIR emission in the grating region can be enhanced significantly and erased reversibly. Furthermore, we successfully demonstrate Bi-activated optical waveguides.These results present new insights into Bi-doped materials and push the development of broadband waveguide amplification.
基金the National Natural Science Foundation of China (61705214)the Research Grants Council-General Research Fund of Hong Kong (RGC GRF PolyU 153281/16P)
文摘Lanthanide ions have attracted great attention due to their distinct photonic properties.The optoelectronic properties and device performance are greatly affected by the interfacial coupling between the layered van der Waals heterostructure,fabricated with two or more transition metal dichalcogenide(TMD)layers.In this work,lanthanide-doped WS2/MoS2 layered heterostructures have been constructed through two synthesis steps.The doped thin films are highly textured nanosheets on wafers.Importantly,the as-prepared heterostructure exhibits efficient near-infrared emission in the range of the telecommunication window,owing to energy transfer between lanthanide ions in the two TMD layers.The use of the layered heterostructure allows the decrease of deleterious cross-relaxation due to homogeneous doping or concentration quenching.The energy transfer process was further elaborated in this work.The results suggest that lanthanide ions can effectively extend the emission band of TMD thin films and their heterostructures.The doped TMD heterostructure is highly favourable for constructing atomically thin near-infrared photonic devices.
基金Project supported by National Natural Science Foundation of China(51832005,51972020)。
文摘Yb^(3+)-doped phosphors have characteristic near-infrared(NIR)emissions,but their applications in phosphor-converted light-emitting-diodes(pc-LEDs)and Si solar cells are limited due to their mismatching excitation spectra.Here,we selected nitride La3 Si6 N11(LSN)as host material to achieve Yb^(3+)NIR emission upon low-energy charge transfer(CT)excitation.The obtained phosphor LSN:Yb^(3+)has a broad CT excitation band ranging from 250 to 500 nm and narrowband NIR emissions ranging from 950 to 1100 nm centered at 983 nm.On the basis of spectral data,the vacuum referred binding energies(VRBE)schemes are constructed to locate energy levels of all lanthanide ions in LSN.We also fabricated NIR pc-LED device using 395 nm LED chip to demonstrate the potential applications of LSN:Yb^(3+)phosphors.
基金Under the auspices of the Philosophy and Social Science Planning Project of Guizhou,China(No.21GZZD59)。
文摘China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
文摘As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.
基金National Natural Science Foundation of China (No. 52204101)Natural Science Foundation of Shandong Province (No. ZR2022QE137)Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB (No. SKLGDUEK2023).
文摘Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.
基金supported by the National Natural Science Foundation of China(NNSFC)grants 42074202,42274196Strategic Priority Research Program of Chinese Academy of Sciences grant XDB41000000ISSI-BJ International Team Interaction between magnetic reconnection and turbulence:From the Sun to the Earth。
文摘Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.
基金Supported by The Southwest Medical University Student Innovation and Entrepreneurship Project Fund,No.202310632045 and No.202310632059。
文摘BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.
基金supported by the National Key Research and Development Program of China[grant number 2023YFF0805403]the National Natural Science Foundation of China[grant number 41975155].
文摘Biogenic isoprene is an important precursor of tropospheric ozone(O_(3)).Here,a coupled chemistry-vegetation model was used to quantify the contributions of isoprene emissions to surface O_(3)pollution on the global scale during 2000-2019.The biogenic isoprene emissions showed high values in mid-low latitudes and seasonal peaks in the summer hemispheres.They promote global surface O_(3)concentrations by 1.75 ppbv annually with regional hotspots of 4.39 ppbv(8.8%)in China and 5.36 ppbv(11.1%)in the U.S.in boreal summer.In the past two decades,isoprene emissions increased by 1.32 TgC yr^(−1)(0.67%yr^(−1))in the Northern Hemisphere but decreased by 0.71 TgC yr^(−1)(0.44%yr^(−1))in the Southern Hemisphere.Such changes of isoprene made opposite contributions to the surface O_(3)trend,with 0.26 ppbv yr^(−1)in eastern China but−0.32 ppbv yr^(−1)in the southeastern U.S.due to the changes in the background regime of chemical reactions.The impact of anthropogenic changes on the O_(3)trend is consistent with that of biogenic isoprene,but two to four times stronger in magnitude.This study revealed that the effective control of anthropogenic NO_(x)emissions could mitigate regional O_(3)pollution even with the increased isoprene emissions under global warming.
文摘The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.