In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-of...In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-off is shown clearly and demonstrated with the paradigm of hybrid decoding. For regular LDPC code, the SNR-threshold performance and error-floor performance could be improved to the optimal level of ML decoding if the decoding complexity is progressively increased, usually corresponding to the near-ML decoding with progressively increased size of list. For irregular LDPC code, the SNR-threshold performance and error-floor performance could only be improved to a bottle-neck even with unlimited decoding complexity. However, with the technique of CRC-aided hybrid decoding, the ML performance could be greatly improved and approached with reasonable complexity thanks to the improved code-weight distribution from the concatenation of CRC and irregular LDPC code. Finally, CRC-aided 5GNR-LDPC code is evaluated and the capacity-approaching capability is shown.展开更多
The purpose of this paper is to construct near-vector spaces using a result by Van der Walt, with Z<sub>p</sub> for p a prime, as the underlying near-field. There are two notions of near-vector spaces, we ...The purpose of this paper is to construct near-vector spaces using a result by Van der Walt, with Z<sub>p</sub> for p a prime, as the underlying near-field. There are two notions of near-vector spaces, we focus on those studied by André [1]. These near-vector spaces have recently proven to be very useful in finite linear games. We will discuss the construction and properties, give examples of these near-vector spaces and give its application in finite linear games.展开更多
文摘In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-off is shown clearly and demonstrated with the paradigm of hybrid decoding. For regular LDPC code, the SNR-threshold performance and error-floor performance could be improved to the optimal level of ML decoding if the decoding complexity is progressively increased, usually corresponding to the near-ML decoding with progressively increased size of list. For irregular LDPC code, the SNR-threshold performance and error-floor performance could only be improved to a bottle-neck even with unlimited decoding complexity. However, with the technique of CRC-aided hybrid decoding, the ML performance could be greatly improved and approached with reasonable complexity thanks to the improved code-weight distribution from the concatenation of CRC and irregular LDPC code. Finally, CRC-aided 5GNR-LDPC code is evaluated and the capacity-approaching capability is shown.
文摘The purpose of this paper is to construct near-vector spaces using a result by Van der Walt, with Z<sub>p</sub> for p a prime, as the underlying near-field. There are two notions of near-vector spaces, we focus on those studied by André [1]. These near-vector spaces have recently proven to be very useful in finite linear games. We will discuss the construction and properties, give examples of these near-vector spaces and give its application in finite linear games.