We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach.Our analysis reveals the presence of a pseudo-magnetic f...We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach.Our analysis reveals the presence of a pseudo-magnetic field and effective spin–orbit interaction(SOI)arising from the curvature,as well as an effective scalar potential resulting from variations in thickness.Importantly,we demonstrate that the physical effect of additional SOI from thickness fluctuations vanishes in low-dimensional systems,thus guaranteeing the robustness of spin interference measurements to thickness imperfection.Furthermore,we establish the applicability of the effective Hamiltonian in both symmetric and asymmetric confinement scenarios,which is crucial for its utilization in one-side etching systems.展开更多
The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathema...The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.展开更多
The Gurtin-Murdoch model has found wide applications in analyzing the mechanical behaviors of nanocomposites with surface/interface effect. In the existing literature, the matrix is usually assumed to be infinite and ...The Gurtin-Murdoch model has found wide applications in analyzing the mechanical behaviors of nanocomposites with surface/interface effect. In the existing literature, the matrix is usually assumed to be infinite and the surface/interface effect is considered only at the inhomogeneity-matrix interface. This assumption is indeed valid as the matrix is usually at macroscale rather than nanoscale. However, if the size of the matrix decreases to the nanoscale too, the surface/interface effect will have to be considered at the outer boundary of the matrix. In this paper, the plane deformation of a circular nano-inhomogeneity embedded inside a finite circular matrix (which implies the matrix is also at nanoscale) is investigated. The stress boundary conditions are given at the inhomogeneity-matrix interface and the outer boundary of the matrix by the G-M model. The analytic solution for the stress field is finally obtained through the complex variable method. The results show that the stress field inside the inhomogeneity is still uniform (size-dependent) when the surface/interface effect is considered. In addition, the stress field inside the bulk (including the inhomogeneity and the matrix) can be influenced not only by the size and elastic constant of the inhomogeneity, but also by those of the matrix.展开更多
Having studied the initial state energy loss versus nuclear shadowing for the Drell-Yan dimuon pairproduction in the color string model,the inhomogeneous shadowing effect is considered in this paper.We find thatthe in...Having studied the initial state energy loss versus nuclear shadowing for the Drell-Yan dimuon pairproduction in the color string model,the inhomogeneous shadowing effect is considered in this paper.We find thatthe inhomogeneous shadowing effect does amend the rate of energy loss per unit path length,-dE/dz.Finally,thetheoretical results for the Drell-Yan differential cross-section ratios are compared with the E772 and E866 data.It isfound that the theoretical results are in good agreement with the experimental data.展开更多
The rate of hydrothermal reaction of SiO_2 and/or A1_2O_3 in the system of CaO-Al_2O_3-SiO_2-H_2O at 200℃ and the factors which influence the reactions are investigated by determining the reaction ratio.The rate of r...The rate of hydrothermal reaction of SiO_2 and/or A1_2O_3 in the system of CaO-Al_2O_3-SiO_2-H_2O at 200℃ and the factors which influence the reactions are investigated by determining the reaction ratio.The rate of reactions depends on the reactive activities of raw materials, initial composition of mixture and relative activity of SiO_2 and A12O3. The hydrothermal reaction can be accelerated by sodium hydroxide,in the case of silica,which has low activity, this is quite obvious.展开更多
We present the effect of disorder on the optical conductivity of two-dimensional inhomogeneous superconductors by applying the kernel polynomial method to solve the Bogoliubov-de Gennes equations. By means of the latt...We present the effect of disorder on the optical conductivity of two-dimensional inhomogeneous superconductors by applying the kernel polynomial method to solve the Bogoliubov-de Gennes equations. By means of the lattice size scaling of the generalized inverse participation ratio, we find that the localization length of the quasiparticle decreases significantly with the increase of the disorder strength. Meanwhile, the weak disorder can readily restrain the Drude weight, while the superconducting gap has the tendency to suppress the low-energy optical conductivity. We also employ the Lanczos exact diagonalization method to study the competition between the on-site repulsive interactions and disorder. It is shown that the screening effect of repulsive interactions significantly enhances the Drude weight in the normal phase.展开更多
Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing sc...Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.展开更多
A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The cont...A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.展开更多
Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear an...Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.展开更多
The influence of intermixing heterogeneous regions that have different electrical properties from the base materials on van der Pauw measurement values was theoretically studied by computer simulation using the finite...The influence of intermixing heterogeneous regions that have different electrical properties from the base materials on van der Pauw measurement values was theoretically studied by computer simulation using the finite-element method. The measurement samples selected were thin films of inhomogeneous semiconductors. Calculated electrical properties, such as resistivity, carrier density, and mobility of the thin films, varied in predictable ways when heterogeneous regions were dispersed in wide ranges over the samples. On the other hand, the mobility of the thin films showed a different change when heterogeneous regions were locally concentrated in the measurement samples.展开更多
In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,th...In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.展开更多
We analyse the influence of an inhomogenous microwave field on the coherence of atom ensembles. Two methods are proposed to suppress the dephasing generated by the inhomogenous Rabi frequency. One of them is realized ...We analyse the influence of an inhomogenous microwave field on the coherence of atom ensembles. Two methods are proposed to suppress the dephasing generated by the inhomogenous Rabi frequency. One of them is realized by using a spin echo, and the other one is based on the identical spin rotation effect. The calculation results show that the contrast of a signal acquired in experiment can be improved by using the two methods. Their advantages and drawbacks are discussed. We hope they can be used to improve the contrast of experimental signals in situations where microwave fields are very inhomogenous. Finally, we discuss the case of a continuous working microwave field and show that the dipole force raised with the inhomogeneitv can be eased by slain flip.展开更多
The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, w...The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, we study the effects of fluid substitution in a physical model, which is an analogy of the three-dimensional inhomogeneous reservoir. For a weak inhomogeneous medium, gas/oil substitution results in positive anomalies in the reservoir layers, and negative anomalies below the bottom of the reservoir layers; while water/oil substitution causes only weak variations in the reservoir layers, but positive anomalies below the bottom of the reservoir layers. For the strong inhomogeneous medium, no matter what kind of fluid substitution(gas/oil or water/oil), there are significant anomalies in seismic amplitude difference attributes both in and below the reservoir layers. Therefore, for weak inhomogeneous media, such as tight sandstone or thin interbedded layers, the RMS amplitude difference attributes can be used to monitor fluid changes and predict the drilling direction; for inhomogeneous medium with karst carves or fractures, it is difficult to accurately determine the distribution of fluids with the RMS amplitude difference attributes.展开更多
This study examines the effects of macroscopic bending and microscopic contact loading in inhomogeneous materials using a semi-analytical model based on Eshelby’s equivalent inclusion method.The model accounts for be...This study examines the effects of macroscopic bending and microscopic contact loading in inhomogeneous materials using a semi-analytical model based on Eshelby’s equivalent inclusion method.The model accounts for bending effects through the beam theory,with bending stress included in the Eshelby’s equivalent inclusion equations.The macroscopic displacement resulting from bending effects is incorporated into the microscopic contact solver,and the final displacement is determined using the conjugate gradient method in an iterative solution.Computational efficiency can be improved by incorporating the discrete convolution and fast Fourier transform.The core scheme is validated using the finite element method,yielding accurate and efficient results for bending-contact problems in inhomogeneous materials.Simulations reveal the interplay between bending,contact loading,and inhomogeneity,as stress around the inhomogeneity alters and the stress concentration area expands under increasing bending moments.Conversely,low-magnitude negative bending moments reduce both contact pressure and stress around the inhomogeneity.The position where inhomogeneities are least affected shifts from the neutral surface depending on the coupling effect.The model provides a valuable bridge for connecting the macroscopic bending effect and microscale contact-inhomogeneity problems by visualizing stress fields and assessing pressure distributions.展开更多
A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,tr...A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.12104239)National Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210581)+2 种基金Nanjing University of Posts and Telecommunications Science Foundation(Grant Nos.NY221024 and NY221100)the Science and Technology Program of Guangxi,China(Grant No.2018AD19310)the Jiangxi Provincial Natural Science Foundation(Grant No.20224BAB211020).
文摘We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach.Our analysis reveals the presence of a pseudo-magnetic field and effective spin–orbit interaction(SOI)arising from the curvature,as well as an effective scalar potential resulting from variations in thickness.Importantly,we demonstrate that the physical effect of additional SOI from thickness fluctuations vanishes in low-dimensional systems,thus guaranteeing the robustness of spin interference measurements to thickness imperfection.Furthermore,we establish the applicability of the effective Hamiltonian in both symmetric and asymmetric confinement scenarios,which is crucial for its utilization in one-side etching systems.
基金Project supported by the National Program on Key Basic Research Project(973 Program)(No.2013CB228002)
文摘The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.
基金support of the China Scholarship Councilthe support of the National Natural Science Foundation of China (11472130)the Natural Sciences and Engineering Research Council of Canada for the financial support
文摘The Gurtin-Murdoch model has found wide applications in analyzing the mechanical behaviors of nanocomposites with surface/interface effect. In the existing literature, the matrix is usually assumed to be infinite and the surface/interface effect is considered only at the inhomogeneity-matrix interface. This assumption is indeed valid as the matrix is usually at macroscale rather than nanoscale. However, if the size of the matrix decreases to the nanoscale too, the surface/interface effect will have to be considered at the outer boundary of the matrix. In this paper, the plane deformation of a circular nano-inhomogeneity embedded inside a finite circular matrix (which implies the matrix is also at nanoscale) is investigated. The stress boundary conditions are given at the inhomogeneity-matrix interface and the outer boundary of the matrix by the G-M model. The analytic solution for the stress field is finally obtained through the complex variable method. The results show that the stress field inside the inhomogeneity is still uniform (size-dependent) when the surface/interface effect is considered. In addition, the stress field inside the bulk (including the inhomogeneity and the matrix) can be influenced not only by the size and elastic constant of the inhomogeneity, but also by those of the matrix.
基金the Innovation Foundation of the Academy of Armored Forces Engineering of PLA under Grant 20062L10
文摘Having studied the initial state energy loss versus nuclear shadowing for the Drell-Yan dimuon pairproduction in the color string model,the inhomogeneous shadowing effect is considered in this paper.We find thatthe inhomogeneous shadowing effect does amend the rate of energy loss per unit path length,-dE/dz.Finally,thetheoretical results for the Drell-Yan differential cross-section ratios are compared with the E772 and E866 data.It isfound that the theoretical results are in good agreement with the experimental data.
基金National H-Tech Program under contract 863-7152101
文摘The rate of hydrothermal reaction of SiO_2 and/or A1_2O_3 in the system of CaO-Al_2O_3-SiO_2-H_2O at 200℃ and the factors which influence the reactions are investigated by determining the reaction ratio.The rate of reactions depends on the reactive activities of raw materials, initial composition of mixture and relative activity of SiO_2 and A12O3. The hydrothermal reaction can be accelerated by sodium hydroxide,in the case of silica,which has low activity, this is quite obvious.
文摘We present the effect of disorder on the optical conductivity of two-dimensional inhomogeneous superconductors by applying the kernel polynomial method to solve the Bogoliubov-de Gennes equations. By means of the lattice size scaling of the generalized inverse participation ratio, we find that the localization length of the quasiparticle decreases significantly with the increase of the disorder strength. Meanwhile, the weak disorder can readily restrain the Drude weight, while the superconducting gap has the tendency to suppress the low-energy optical conductivity. We also employ the Lanczos exact diagonalization method to study the competition between the on-site repulsive interactions and disorder. It is shown that the screening effect of repulsive interactions significantly enhances the Drude weight in the normal phase.
基金Project(51375113)supported by the National Natural Science Foundation of China
文摘Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.
基金supported by the National Basic Research Program of China(973 Program)(No.2013CB228002)
文摘A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.
基金Project(2011CB013601) supported by the National Basic Research Program of ChinaProject(51378258) supported by the National Natural Science Foundation of China
文摘Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.
文摘The influence of intermixing heterogeneous regions that have different electrical properties from the base materials on van der Pauw measurement values was theoretically studied by computer simulation using the finite-element method. The measurement samples selected were thin films of inhomogeneous semiconductors. Calculated electrical properties, such as resistivity, carrier density, and mobility of the thin films, varied in predictable ways when heterogeneous regions were dispersed in wide ranges over the samples. On the other hand, the mobility of the thin films showed a different change when heterogeneous regions were locally concentrated in the measurement samples.
基金supported by the National Natural Science Foundation of China(Grants 11471262,11202032)the Basic Research Project of National Defense(Grant B 1520132013)supported by the State Key Laboratory of Science and Engineering Computing and Center for high performance computing of Northwestem Polytechnical University
文摘In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB921504)the National Natural Science Foundation of China (Grant No. 10974210)
文摘We analyse the influence of an inhomogenous microwave field on the coherence of atom ensembles. Two methods are proposed to suppress the dephasing generated by the inhomogenous Rabi frequency. One of them is realized by using a spin echo, and the other one is based on the identical spin rotation effect. The calculation results show that the contrast of a signal acquired in experiment can be improved by using the two methods. Their advantages and drawbacks are discussed. We hope they can be used to improve the contrast of experimental signals in situations where microwave fields are very inhomogenous. Finally, we discuss the case of a continuous working microwave field and show that the dipole force raised with the inhomogeneitv can be eased by slain flip.
基金Project(2013CB228600)supported by the National Basic Research Program of China
文摘The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, we study the effects of fluid substitution in a physical model, which is an analogy of the three-dimensional inhomogeneous reservoir. For a weak inhomogeneous medium, gas/oil substitution results in positive anomalies in the reservoir layers, and negative anomalies below the bottom of the reservoir layers; while water/oil substitution causes only weak variations in the reservoir layers, but positive anomalies below the bottom of the reservoir layers. For the strong inhomogeneous medium, no matter what kind of fluid substitution(gas/oil or water/oil), there are significant anomalies in seismic amplitude difference attributes both in and below the reservoir layers. Therefore, for weak inhomogeneous media, such as tight sandstone or thin interbedded layers, the RMS amplitude difference attributes can be used to monitor fluid changes and predict the drilling direction; for inhomogeneous medium with karst carves or fractures, it is difficult to accurately determine the distribution of fluids with the RMS amplitude difference attributes.
基金support from the National Science and Technology Major Project(no.J2019-VII-0017-0159)the National Natural Science Foundation of China(no.52205048)+1 种基金support from the National Natural Science Foundation of China(no.52205192)Jinran Li would like to thank the China Scholarship Council(CSC)for its financial support(file no.201906290129)during his studies at Northwestern University as a visiting student.
文摘This study examines the effects of macroscopic bending and microscopic contact loading in inhomogeneous materials using a semi-analytical model based on Eshelby’s equivalent inclusion method.The model accounts for bending effects through the beam theory,with bending stress included in the Eshelby’s equivalent inclusion equations.The macroscopic displacement resulting from bending effects is incorporated into the microscopic contact solver,and the final displacement is determined using the conjugate gradient method in an iterative solution.Computational efficiency can be improved by incorporating the discrete convolution and fast Fourier transform.The core scheme is validated using the finite element method,yielding accurate and efficient results for bending-contact problems in inhomogeneous materials.Simulations reveal the interplay between bending,contact loading,and inhomogeneity,as stress around the inhomogeneity alters and the stress concentration area expands under increasing bending moments.Conversely,low-magnitude negative bending moments reduce both contact pressure and stress around the inhomogeneity.The position where inhomogeneities are least affected shifts from the neutral surface depending on the coupling effect.The model provides a valuable bridge for connecting the macroscopic bending effect and microscale contact-inhomogeneity problems by visualizing stress fields and assessing pressure distributions.
基金Projects(50835002,50805035)support by the National Natural Science Foundation of ChinaProject(QC08C55)supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(200802131031)supported by the PhD Programs Foundation of Ministry of Education of China for Young Scholars
文摘A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective.