The near-surface temperature lapse rates for the core area of the Kunlun Mountains remain critically unresolved due to data scarcity.Here,we revealed the spatial and temporal patterns of nearsurface temperature lapse ...The near-surface temperature lapse rates for the core area of the Kunlun Mountains remain critically unresolved due to data scarcity.Here,we revealed the spatial and temporal patterns of nearsurface temperature lapse rate in the Kunlun Mountain regions based on both long-term meteorological records(1961-2017)and field surveys measured data(2012-2017).The results showed that(1)The near-surface temperature lapse rates(β;)has spatiotemporal distribution patterns on the Northwestern Kunlun Mountains(NWKM),and in complex terrain areas the complexity of the temperature-elevation relationship cannot be explained by the constant environmental temperature lapse rate(0.65℃/100 m)throughout alone.(2)Theβ;for the daily mean,minimum,and maximum temperature on the north slopes in the Kunlun mountain area are 0.41,0.47,and 0.37℃/100 m and on the Tiznafu River(TR)basin are 0.51,0.47 and 0.53℃/100 m,respectively.(3)The variations ofβ;for daily maximum and minimum temperature of the two regions exhibit similar monthly characteristics,which are lower in the winter and spring months than in other months.A greatest variability ofβ;for the daily mean,minimum,and maximum temperature appears in winter and a light variability ofβ;occurs in spring.The seasonal variability ofβ;for daily maximum temperature is greater than that for daily minimum temperature,and the seasonal variability ofβ;for daily average temperature has the smallest variability.(4)There is no significant trend of change occurred in theβ;of NWKM.(5)The spatial and temporal variations ofβ;for the NWKM are linked to the geographic differences and climate factors.The results of Grey Relational Analysis showed that theβ;distribution is mainly influenced by the wind speed and relative humidity of the NWKM.展开更多
Satellite SST(sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the globa...Satellite SST(sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST(near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature(~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00–15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed(<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.展开更多
Satellite-derived sea surface temperatures(SSTs) from the tropical rainfall measuring mission(TRMM)microwave imager(TMI) and the advanced microwave scanning radiometer for the earth observing system(AMSR-E) we...Satellite-derived sea surface temperatures(SSTs) from the tropical rainfall measuring mission(TRMM)microwave imager(TMI) and the advanced microwave scanning radiometer for the earth observing system(AMSR-E) were compared with non-pumped near-surface temperatures(NSTs) obtained from Argo profiling floats over the global oceans. Factors that might cause temperature differences were examined, including wind speed, columnar water vapor, liquid cloud water, and geographic location. The results show that both TMI and AMSR-E SSTs are highly correlated with the Argo NSTs; however, at low wind speeds, they are on average warmer than the Argo NSTs. The TMI performs slightly better than the AMSR-E at low wind speeds, whereas the TMI SST retrievals might be poorly calibrated at high wind speeds. The temperature differences indicate a warm bias of the TMI/AMSR-E when columnar water vapor is low, which can indicate that neither TMI nor AMSR-E SSTs are well calibrated at high latitudes. The SST in the Kuroshio Extension region has higher variability than in the Kuroshio region. The variability of the temperature difference between the satellite-retrieved SSTs and the Argo NSTs is lower in the Kuroshio Extension during spring. At low wind speeds, neither TMI nor AMSR-E SSTs are well calibrated, although the TMI performs better than the AMSR-E.展开更多
This study investigates the recent near-surface temperature trends over the Antarctic Peninsula.We make use of available surface observations,ECMWF’s ERA5 and its predecessor ERA-Interim,as well as numerical simulati...This study investigates the recent near-surface temperature trends over the Antarctic Peninsula.We make use of available surface observations,ECMWF’s ERA5 and its predecessor ERA-Interim,as well as numerical simulations,allowing us to contrast different data sources.We use hindcast simulations performed with Polar-WRF over the Antarctic Peninsula on a nested domain configuration at 45 km(PWRF-45)and 15 km(PWRF-15)spatial resolutions for the period 1991?2015.In addition,we include hindcast simulations of KNMI-RACMO21P obtained from the CORDEX-Antarctica domain(~50 km)for further comparisons.Results show that there is a marked windward warming trend except during summer.This windward warming trend is particularly notable in the autumn season and likely to be associated with the recent deepening of the Amundsen/Bellingshausen Sea low and warm advection towards the Antarctic Peninsula.On the other hand,an overall summer cooling is characterized by the strengthening of the Weddell Sea low as well as an anticyclonic trend over the Amundsen Sea accompanied by northward winds.The persistent cooling trend observed at the Larsen Ice Shelf station is not captured by ERA-Interim,whereas hindcast simulations indicate that there is a clear pattern of windward warming and leeward cooling.Furthermore,larger temporal correlations and lower differences exhibited by PWRF-15 illustrate the existence of the added value in the higher spatial resolution simulation.展开更多
The zonal averages of temperature (the so-called normal temperatures) for numerous parallels of latitude published between 1852 and 1913 by Dove, Forbes, Ferrel, Spitaler, Batchelder, Arrhenius, von Bezold, Hopfner, v...The zonal averages of temperature (the so-called normal temperatures) for numerous parallels of latitude published between 1852 and 1913 by Dove, Forbes, Ferrel, Spitaler, Batchelder, Arrhenius, von Bezold, Hopfner, von Hann, and Börnstein were used to quantify the global (spherical) and spheroidal mean near-surface temperature of the terrestrial atmosphere. Only the datasets of Dove and Forbes published in the 1850s provided global averages below 〈T〉=14°C, mainly due to the poor coverage of the Southern Hemisphere by observations during that time. The global averages derived from the distributions of normal temperatures published between 1877 and 1913 ranged from 〈T〉=14.0°C (Batchelder) to 〈T〉=15.1°C (Ferrel). The differences between the global and the spheroidal mean near-surface air temperature are marginal. To examine the uncertainty due to interannual variability and different years considered in the historic zonal mean temperature distributions, the historical normal temperatures were perturbed within ±2σ to obtain ensembles of 50 realizations for each dataset. Numerical integrations of the perturbed distributions indicate uncertainties in the global averages in the range of ±0.3°C to ±0.6°C and depended on the number of available normal temperatures. Compared to our results, the global mean temperature of 〈T〉=15.0°C published by von Hann in 1897 and von Bezold in 1901 and 1906 is notably too high, while 〈T〉=14.4°C published by von Hann in 1908 seems to be more adequate within the range of uncertainty. The HadCRUT4 record provided 〈T〉≌?13.7°C for 1851-1880 and 〈T〉=13.6°C for 1881-1910. The Berkeley record provided 〈T〉=13.6°C and 〈T〉≌?13.5°C for these periods, respectively. The NASA GISS record yielded 〈T〉=13.6°C for 1881-1910 as well. These results are notably lower than those based on the historic zonal means. For 1991-2018, the HadCRUT4, Berkeley, and NASA GISS records provided 〈T〉=14.4°C, 〈T〉=14.5°C, and 〈T〉=14.5°C, respectively. The comparison of the 1991-2018 globally averaged near-surface temperature with those derived from distributions of zonal temperature averages for numerous parallels of latitude suggests no change for the past 100 years.展开更多
Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are n...Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.展开更多
The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 201...The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 2011) and the station observations(2010 to 2011).The element is treated as the prediction variable factor in the GRAPES model and used to improve the regional prediction of sea fog on Guangdong coastland.(1) The relationship between this factor and the occurrence of sea fog is explicit:When the sea fog happens,the value of this factor is always large in some specific periods,and the negative value of this factor decreases significantly or turns positive,suggesting the enhancement of warm and moist advection of air flow near the surface,which favors the development of sea fog.(2) The transportation of warm and moist advection over Guangdong coastland is featured by some stages and the jumping among these states.It also gets stronger over time.Meanwhile,the northward propagation of warm and moist advection is quite consistent with the northward advancing of sea fog from south to north along the coastland of China.(3) The GRAPES model can well simulate and realize the factor of near-surface temperature difference.Besides,the accuracy of regional prediction of marine fog,the relevant threat score and Heidke skill score are all improved when the factor is involved.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
An increasing number of palaeo-climatic records have been reported to identify the Holocene climate history in the arid Xinjiang region of northwest China. However, few studies have fully considered the internal linka...An increasing number of palaeo-climatic records have been reported to identify the Holocene climate history in the arid Xinjiang region of northwest China. However, few studies have fully considered the internal linkages within the regional climate system, which may limit our understanding of the forcing mechanisms of Holocene climate change in this region. Here, we systematically consider three major issues of the moisture/precipitation, temperature and near-surface wind relevant to the Holocene climate history of Xinjiang. First, despite there still has debated for the Holocene moisture evolution in this region, more climatic reconstructions from lake sediments, loess, sand-dunes and peats support a long-term regional wetting trend. Second, temperature records from ice cores, peats and stalagmites demonstrate a long-term winter warming trend during the Holocene in middle-to high-latitudes of Asia. Third, recent studies of aeolian sedimentary sequences reveal that the near-surface winds in winter gradually weakened during the Holocene, whereas the winter mid-latitude Westerlies strengthened in the Tienshan Mountains. Based on this evidence, in the arid Xinjiang region we propose an early to middle Holocene relatively cold and dry interval, with strong near-surface winds;and a warmer, wetter interval with weaker near-surface winds in the middle to late Holocene during winter. Additionally,we develop a conceptual model to explain the pattern of Holocene climate changes in this region.From the early to the late Holocene, the increasing atmospheric COcontent and winter insolation,and the shrinking of high-latitude continental ice-sheets, resulted in increasing winter temperatures in middle to high latitudes in the Northern Hemisphere. Subsequently, the increased winter temperature strengthened the winter mid-latitude Westerlies and weakened the Siberian high-pressure system,which caused an increase in winter precipitation and a decrease in near-surface wind strength. This scenario is strongly supported by evidence from geological records, climate simulation results, and modern reanalysis data. Our hypothesis highlights the important contribution of winter temperature in driving the Holocene climatic evolution of the arid Xinjiang region, and it implies that the socio-economic development and water resources security of this region will face serious challenges presented by the increasing winter temperature in the future.展开更多
[Objective]The paper was to explore the influence of near-surface low temperature on cultivation of soft-seed pomegranate,and to provide guidance for planting location of soft-seed pomegranate.[Method]Taking 10 soft-s...[Objective]The paper was to explore the influence of near-surface low temperature on cultivation of soft-seed pomegranate,and to provide guidance for planting location of soft-seed pomegranate.[Method]Taking 10 soft-seed pomegranate planting plots under different site conditions as the research objects,the near-surface low temperature of 45-50 cm was dynamically monitored from December 1,2018 to February 20,2019,and comparative analysis was made based on the local meteorological data over the same period.[Result]The near-surface low temperature of each temperature monitoring point was lower than the local meteorological data,which were all in the range of low temperature causing freezing in-jury of pomegranate trees,but the degree of freezing injury was different.The variation of near-surface low temperature was positively correlated with the altitude of terrain,but negatively correlated with the difference of topography and landform.When the local topography and landform were similar,the accumulation time of near-surface low temperature was negatively correlated with the altitude of terrain,while the duration of low tem-perature directly affected the degree of freezing injury.[Conclusion]The development of soft-seed pomegranate cultivation in Tunisia along Huang Mangling region in Henan Province refers to the local meteorological data.Meantime,it is also necessary to pay attention to the impact of regional microclimate environment,especially early monitoring of near-surface temperature to select suitable site and natural conditions.展开更多
This study investigated the performance of the mesoscale Weather Research and Forecasting(WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in J...This study investigated the performance of the mesoscale Weather Research and Forecasting(WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in June and December 2015. The spatial distribution of the monthly average bias errors in the forecasts of 2-m temperature and 10-m wind speed is analyzed first. It is found that the forecast errors for 2-m temperature and 10-m wind speed in June are strongly correlated with the terrain distribution. However, this type of correlation is not apparent in December, perhaps due to the inaccurate specification of the surface albedo and freezing-thawing process of frozen soil in winter in Northwest China in the WRF model. In addition, the WRF model is able to reproduce the diurnal variation in 2-m temperature and 10-m wind speed, although with weakened magnitude. Elevations and land-use types have strong influences on the forecast of near-surface variables with seasonal variations. The overall results imply that accurate specification of the complex underlying surface and seasonal changes in land cover is necessary for improving near-surface forecasts over Northwest China.展开更多
Time series for the Southern Oscillation Index and mean global near surface temperature anomalies are compared for the 1950 to 2012 period using recently released HadCRU4 data. The method avoids a focused statistical ...Time series for the Southern Oscillation Index and mean global near surface temperature anomalies are compared for the 1950 to 2012 period using recently released HadCRU4 data. The method avoids a focused statistical analysis of the data, in part because the study deals with smoothed data, which means there is the danger of spurious correlations, and in part because the El Ni?o Southern Oscillation is a cyclical phenomenon of irregular period. In these situations the results of regression analysis or similar statistical evaluation can be misleading. With the potential controversy arising over a particular statistical analysis removed, the findings indicate that El Nino-Southern Oscillation exercises a major influence on mean global temperature. The results show the potential of natural forcing mechanisms to account for mean global temperature variation, although the extent of the influence is difficult to quantify from among the variability of short-term influences.展开更多
Biogeophysical effects of land use and land cover (LULC) changes play a significant role in modulating climate on various spatial scales. In this study, a set of recent LULC products with a spatial resolution of 500...Biogeophysical effects of land use and land cover (LULC) changes play a significant role in modulating climate on various spatial scales. In this study, a set of recent LULC products with a spatial resolution of 500 m was developed in China for update in RegCM4 (regional climate model version 4). Two sets of comparative numerical experiments were conducted to study the effects of LULC changes on near-surface temperature simulation. The results show that after LULC changes, areas of crops and mixed woodlands as well as urban areas increase over entire China, accom- panied with greatly expanded mixed farming and forests/field mosaics in southern China, and reduced areas of 1) ir- rigated crops and short grasses in northern China and the Tibetan Plateau, and 2) semi-desert and desert in northwest-em China. Improvements in the LULC data clearly result in more accurate simulations of the near-surface temperat-ure. Specifically, increasing latent heat and longwave albedo due to enhanced LULC in certain areas lead to reduc-tion in land surface temperature (LST), while changes in shortwave albedo and sensible heat also exert a great influ- ence on the LST. Overall, these parameter adjustments reduce the biases in near-surface temperature simulation.展开更多
An analysis of the minimum air temperature behavior was carried out for the southern tip of South America and the western side of the Antarctica Peninsula. Punta Arenas shows an overall annual warming of 0.15°C p...An analysis of the minimum air temperature behavior was carried out for the southern tip of South America and the western side of the Antarctica Peninsula. Punta Arenas shows an overall annual warming of 0.15°C per decade during the 1960-2010 period, although this occurred mainly in the summer and winter seasons. The trend of the air temperature in the western side of the Antarctic Peninsula shows an increase until around 2000, but the warming rate during the last 2001-2010 decade has been less than previous decades;in particular, meteorological stations in King George Island show slight cooling. The lineal annual warming per decade as shown by Bellingshausen, Verndsky/Faraday and Rothera stations are 0.26°C ± 0.75°C, 0.55°C ± 1.26°C and 0.69°C ± 1.31°C;for the respectively, 1969-2010, 1951-2010 and 1978-2010 periods. These rates of warming are slightly lower than those found for the same stations but for the 1969-2000, 1951-2000 and 1978-2000 periods.展开更多
According to the latest version(version 2.0) of the China global Merged Surface Temperature(CMST2.0) dataset, the global mean surface temperature(GMST) in the first half of 2023 reached its third warmest value since t...According to the latest version(version 2.0) of the China global Merged Surface Temperature(CMST2.0) dataset, the global mean surface temperature(GMST) in the first half of 2023 reached its third warmest value since the period of instrumental observation began, being only slightly lower than the values recorded in 2016 and 2020, and historically record-breaking GMST emerged from May to July 2023. Further analysis also indicates that if the surface temperature in the last five months of 2023 approaches the average level of the past five years, the annual average surface temperature anomaly in 2023 of approximately 1.26°C will break the previous highest surface temperature, which was recorded in 2016of approximately 1.25°C(both values relative to the global pre-industrialization period, i.e., the average value from 1850 to1900). With El Ni?o triggering a record-breaking hottest July, record-breaking average annual temperatures will most likely become a reality in 2023.展开更多
In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming ...In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered.展开更多
High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. How...High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. However, the bHLH TFs responsible for high-temperature tolerance in cucumbers have not been identified. We used transcriptome profiling to screen the high temperature-responsive candidate bHLH TFs in cucumber. Here, we found that the expression of 75 CsbHLH genes was altered under high-temperature stress. The expression of the CsSPT gene was induced by high temperatures in TT(Thermotolerant) cucumber plants. However, the Csspt mutant plants obtained by the CRISPR-Cas9 system showed severe thermosensitive symptoms, including wilted leaves with brown margins and reduced root density and cell activity.The Csspt mutant plants also exhibited elevated H_(2)O_(2) levels and down-regulated photosystem-related genes under normal conditions.Furthermore, there were high relative electrolytic leakage(REC), malondialdehyde(MDA), glutathione(GSH), and superoxide radical(O_(2)^(·-)) levels in the Csspt mutant plants, with decreased Proline content after the high-temperature treatment. Transcriptome analysis showed that the photosystem and chloroplast activities in Csspt mutant plants were extremely disrupted by the high-temperature stress compared with wildtype(WT) plants. Moreover, the plant hormone signal transduction, as well as MAPK and calcium signaling pathways were activated in Csspt mutant plants under high-temperature stress. The HSF and HSP family genes shared the same upregulated expression patterns in Csspt and WT plants under high-temperature conditions. However, most bHLH, NAC, and bZIP family genes were significantly down-regulated by heat in Csspt mutant plants. Thus, these results demonstrated that CsSPT regulated the high-temperature response by recruiting photosynthesis components, signaling pathway molecules, and transcription factors. Our results provide important insights into the heat response mechanism of CsSPT in cucumber and its potential as a target for breeding heat-resistant crops.展开更多
The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB...The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement.The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12℃. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures.展开更多
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm...A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.展开更多
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41901022,41807445 and 41975010)the National Key Research and Development Program of China(Grant No.2021YFE0100700)。
文摘The near-surface temperature lapse rates for the core area of the Kunlun Mountains remain critically unresolved due to data scarcity.Here,we revealed the spatial and temporal patterns of nearsurface temperature lapse rate in the Kunlun Mountain regions based on both long-term meteorological records(1961-2017)and field surveys measured data(2012-2017).The results showed that(1)The near-surface temperature lapse rates(β;)has spatiotemporal distribution patterns on the Northwestern Kunlun Mountains(NWKM),and in complex terrain areas the complexity of the temperature-elevation relationship cannot be explained by the constant environmental temperature lapse rate(0.65℃/100 m)throughout alone.(2)Theβ;for the daily mean,minimum,and maximum temperature on the north slopes in the Kunlun mountain area are 0.41,0.47,and 0.37℃/100 m and on the Tiznafu River(TR)basin are 0.51,0.47 and 0.53℃/100 m,respectively.(3)The variations ofβ;for daily maximum and minimum temperature of the two regions exhibit similar monthly characteristics,which are lower in the winter and spring months than in other months.A greatest variability ofβ;for the daily mean,minimum,and maximum temperature appears in winter and a light variability ofβ;occurs in spring.The seasonal variability ofβ;for daily maximum temperature is greater than that for daily minimum temperature,and the seasonal variability ofβ;for daily average temperature has the smallest variability.(4)There is no significant trend of change occurred in theβ;of NWKM.(5)The spatial and temporal variations ofβ;for the NWKM are linked to the geographic differences and climate factors.The results of Grey Relational Analysis showed that theβ;distribution is mainly influenced by the wind speed and relative humidity of the NWKM.
基金Supported by the National Basic Research Program of China(973 Program)(No.2013CB430301)the National Natural Science Foundation of China(Nos.41321004,41206022,41406022)the National Special Research Fund for Non-Profit Marine Sector(No.201305032)
文摘Satellite SST(sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST(near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature(~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00–15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed(<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.
基金The National Basic Research Program(973 Program)of China under contract No.2013CB430301the National Natural Science Foundation of China under contract Nos 41440039,41206022 and 41406022the Public Science and Technology Research Funds Projects of Ocean under contract No.201305032
文摘Satellite-derived sea surface temperatures(SSTs) from the tropical rainfall measuring mission(TRMM)microwave imager(TMI) and the advanced microwave scanning radiometer for the earth observing system(AMSR-E) were compared with non-pumped near-surface temperatures(NSTs) obtained from Argo profiling floats over the global oceans. Factors that might cause temperature differences were examined, including wind speed, columnar water vapor, liquid cloud water, and geographic location. The results show that both TMI and AMSR-E SSTs are highly correlated with the Argo NSTs; however, at low wind speeds, they are on average warmer than the Argo NSTs. The TMI performs slightly better than the AMSR-E at low wind speeds, whereas the TMI SST retrievals might be poorly calibrated at high wind speeds. The temperature differences indicate a warm bias of the TMI/AMSR-E when columnar water vapor is low, which can indicate that neither TMI nor AMSR-E SSTs are well calibrated at high latitudes. The SST in the Kuroshio Extension region has higher variability than in the Kuroshio region. The variability of the temperature difference between the satellite-retrieved SSTs and the Argo NSTs is lower in the Kuroshio Extension during spring. At low wind speeds, neither TMI nor AMSR-E SSTs are well calibrated, although the TMI performs better than the AMSR-E.
基金was funded by FONDAPCONICYT(Grant No.15110009).D.B.acknowledges support from CONICYT-PAI(Grant No.77190080).
文摘This study investigates the recent near-surface temperature trends over the Antarctic Peninsula.We make use of available surface observations,ECMWF’s ERA5 and its predecessor ERA-Interim,as well as numerical simulations,allowing us to contrast different data sources.We use hindcast simulations performed with Polar-WRF over the Antarctic Peninsula on a nested domain configuration at 45 km(PWRF-45)and 15 km(PWRF-15)spatial resolutions for the period 1991?2015.In addition,we include hindcast simulations of KNMI-RACMO21P obtained from the CORDEX-Antarctica domain(~50 km)for further comparisons.Results show that there is a marked windward warming trend except during summer.This windward warming trend is particularly notable in the autumn season and likely to be associated with the recent deepening of the Amundsen/Bellingshausen Sea low and warm advection towards the Antarctic Peninsula.On the other hand,an overall summer cooling is characterized by the strengthening of the Weddell Sea low as well as an anticyclonic trend over the Amundsen Sea accompanied by northward winds.The persistent cooling trend observed at the Larsen Ice Shelf station is not captured by ERA-Interim,whereas hindcast simulations indicate that there is a clear pattern of windward warming and leeward cooling.Furthermore,larger temporal correlations and lower differences exhibited by PWRF-15 illustrate the existence of the added value in the higher spatial resolution simulation.
文摘The zonal averages of temperature (the so-called normal temperatures) for numerous parallels of latitude published between 1852 and 1913 by Dove, Forbes, Ferrel, Spitaler, Batchelder, Arrhenius, von Bezold, Hopfner, von Hann, and Börnstein were used to quantify the global (spherical) and spheroidal mean near-surface temperature of the terrestrial atmosphere. Only the datasets of Dove and Forbes published in the 1850s provided global averages below 〈T〉=14°C, mainly due to the poor coverage of the Southern Hemisphere by observations during that time. The global averages derived from the distributions of normal temperatures published between 1877 and 1913 ranged from 〈T〉=14.0°C (Batchelder) to 〈T〉=15.1°C (Ferrel). The differences between the global and the spheroidal mean near-surface air temperature are marginal. To examine the uncertainty due to interannual variability and different years considered in the historic zonal mean temperature distributions, the historical normal temperatures were perturbed within ±2σ to obtain ensembles of 50 realizations for each dataset. Numerical integrations of the perturbed distributions indicate uncertainties in the global averages in the range of ±0.3°C to ±0.6°C and depended on the number of available normal temperatures. Compared to our results, the global mean temperature of 〈T〉=15.0°C published by von Hann in 1897 and von Bezold in 1901 and 1906 is notably too high, while 〈T〉=14.4°C published by von Hann in 1908 seems to be more adequate within the range of uncertainty. The HadCRUT4 record provided 〈T〉≌?13.7°C for 1851-1880 and 〈T〉=13.6°C for 1881-1910. The Berkeley record provided 〈T〉=13.6°C and 〈T〉≌?13.5°C for these periods, respectively. The NASA GISS record yielded 〈T〉=13.6°C for 1881-1910 as well. These results are notably lower than those based on the historic zonal means. For 1991-2018, the HadCRUT4, Berkeley, and NASA GISS records provided 〈T〉=14.4°C, 〈T〉=14.5°C, and 〈T〉=14.5°C, respectively. The comparison of the 1991-2018 globally averaged near-surface temperature with those derived from distributions of zonal temperature averages for numerous parallels of latitude suggests no change for the past 100 years.
基金supported by the National Natural Science Foundation of China (Grant No. 42061004)the Joint Special Project of Agricultural Basic Research of Yunnan Province (Grant No. 202101BD070001093)the Youth Special Project of Xingdian Talent Support Program of Yunnan Province
文摘Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.
基金Chinese Special Scientific Research Project for Public Interest(GYHY200906008)Natural Science Foundation of China(41275025)+2 种基金Guangdong Science and Technology Plan Project(2012A061400012)Meteorological Project from Guangdong Meteorological Bureau(201003)Research on Pre-warning and Forecasting Techniques for Marine Meteorology from Guangdong Meteorological Bureau
文摘The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 2011) and the station observations(2010 to 2011).The element is treated as the prediction variable factor in the GRAPES model and used to improve the regional prediction of sea fog on Guangdong coastland.(1) The relationship between this factor and the occurrence of sea fog is explicit:When the sea fog happens,the value of this factor is always large in some specific periods,and the negative value of this factor decreases significantly or turns positive,suggesting the enhancement of warm and moist advection of air flow near the surface,which favors the development of sea fog.(2) The transportation of warm and moist advection over Guangdong coastland is featured by some stages and the jumping among these states.It also gets stronger over time.Meanwhile,the northward propagation of warm and moist advection is quite consistent with the northward advancing of sea fog from south to north along the coastland of China.(3) The GRAPES model can well simulate and realize the factor of near-surface temperature difference.Besides,the accuracy of regional prediction of marine fog,the relevant threat score and Heidke skill score are all improved when the factor is involved.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0602)the National Natural Science Foundation of China (Grant Nos. 41401046, 42067049)+1 种基金the Education Science and technology Innovation project of Gansu Province (2021QB-118)the Jiangxi Provincial Natural Science Foundation (Grant No. 20202BABL213035)。
文摘An increasing number of palaeo-climatic records have been reported to identify the Holocene climate history in the arid Xinjiang region of northwest China. However, few studies have fully considered the internal linkages within the regional climate system, which may limit our understanding of the forcing mechanisms of Holocene climate change in this region. Here, we systematically consider three major issues of the moisture/precipitation, temperature and near-surface wind relevant to the Holocene climate history of Xinjiang. First, despite there still has debated for the Holocene moisture evolution in this region, more climatic reconstructions from lake sediments, loess, sand-dunes and peats support a long-term regional wetting trend. Second, temperature records from ice cores, peats and stalagmites demonstrate a long-term winter warming trend during the Holocene in middle-to high-latitudes of Asia. Third, recent studies of aeolian sedimentary sequences reveal that the near-surface winds in winter gradually weakened during the Holocene, whereas the winter mid-latitude Westerlies strengthened in the Tienshan Mountains. Based on this evidence, in the arid Xinjiang region we propose an early to middle Holocene relatively cold and dry interval, with strong near-surface winds;and a warmer, wetter interval with weaker near-surface winds in the middle to late Holocene during winter. Additionally,we develop a conceptual model to explain the pattern of Holocene climate changes in this region.From the early to the late Holocene, the increasing atmospheric COcontent and winter insolation,and the shrinking of high-latitude continental ice-sheets, resulted in increasing winter temperatures in middle to high latitudes in the Northern Hemisphere. Subsequently, the increased winter temperature strengthened the winter mid-latitude Westerlies and weakened the Siberian high-pressure system,which caused an increase in winter precipitation and a decrease in near-surface wind strength. This scenario is strongly supported by evidence from geological records, climate simulation results, and modern reanalysis data. Our hypothesis highlights the important contribution of winter temperature in driving the Holocene climatic evolution of the arid Xinjiang region, and it implies that the socio-economic development and water resources security of this region will face serious challenges presented by the increasing winter temperature in the future.
文摘[Objective]The paper was to explore the influence of near-surface low temperature on cultivation of soft-seed pomegranate,and to provide guidance for planting location of soft-seed pomegranate.[Method]Taking 10 soft-seed pomegranate planting plots under different site conditions as the research objects,the near-surface low temperature of 45-50 cm was dynamically monitored from December 1,2018 to February 20,2019,and comparative analysis was made based on the local meteorological data over the same period.[Result]The near-surface low temperature of each temperature monitoring point was lower than the local meteorological data,which were all in the range of low temperature causing freezing in-jury of pomegranate trees,but the degree of freezing injury was different.The variation of near-surface low temperature was positively correlated with the altitude of terrain,but negatively correlated with the difference of topography and landform.When the local topography and landform were similar,the accumulation time of near-surface low temperature was negatively correlated with the altitude of terrain,while the duration of low tem-perature directly affected the degree of freezing injury.[Conclusion]The development of soft-seed pomegranate cultivation in Tunisia along Huang Mangling region in Henan Province refers to the local meteorological data.Meantime,it is also necessary to pay attention to the impact of regional microclimate environment,especially early monitoring of near-surface temperature to select suitable site and natural conditions.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201506001)Northwest Regional Numerical Forecasting Innovation Team Fund(GSQXCXTD-2017-02)
文摘This study investigated the performance of the mesoscale Weather Research and Forecasting(WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in June and December 2015. The spatial distribution of the monthly average bias errors in the forecasts of 2-m temperature and 10-m wind speed is analyzed first. It is found that the forecast errors for 2-m temperature and 10-m wind speed in June are strongly correlated with the terrain distribution. However, this type of correlation is not apparent in December, perhaps due to the inaccurate specification of the surface albedo and freezing-thawing process of frozen soil in winter in Northwest China in the WRF model. In addition, the WRF model is able to reproduce the diurnal variation in 2-m temperature and 10-m wind speed, although with weakened magnitude. Elevations and land-use types have strong influences on the forecast of near-surface variables with seasonal variations. The overall results imply that accurate specification of the complex underlying surface and seasonal changes in land cover is necessary for improving near-surface forecasts over Northwest China.
文摘Time series for the Southern Oscillation Index and mean global near surface temperature anomalies are compared for the 1950 to 2012 period using recently released HadCRU4 data. The method avoids a focused statistical analysis of the data, in part because the study deals with smoothed data, which means there is the danger of spurious correlations, and in part because the El Ni?o Southern Oscillation is a cyclical phenomenon of irregular period. In these situations the results of regression analysis or similar statistical evaluation can be misleading. With the potential controversy arising over a particular statistical analysis removed, the findings indicate that El Nino-Southern Oscillation exercises a major influence on mean global temperature. The results show the potential of natural forcing mechanisms to account for mean global temperature variation, although the extent of the influence is difficult to quantify from among the variability of short-term influences.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201506001)Gansu Provincial Meteorological Bureau Key Research Project(GSMAZd2017-10)
文摘Biogeophysical effects of land use and land cover (LULC) changes play a significant role in modulating climate on various spatial scales. In this study, a set of recent LULC products with a spatial resolution of 500 m was developed in China for update in RegCM4 (regional climate model version 4). Two sets of comparative numerical experiments were conducted to study the effects of LULC changes on near-surface temperature simulation. The results show that after LULC changes, areas of crops and mixed woodlands as well as urban areas increase over entire China, accom- panied with greatly expanded mixed farming and forests/field mosaics in southern China, and reduced areas of 1) ir- rigated crops and short grasses in northern China and the Tibetan Plateau, and 2) semi-desert and desert in northwest-em China. Improvements in the LULC data clearly result in more accurate simulations of the near-surface temperat-ure. Specifically, increasing latent heat and longwave albedo due to enhanced LULC in certain areas lead to reduc-tion in land surface temperature (LST), while changes in shortwave albedo and sensible heat also exert a great influ- ence on the LST. Overall, these parameter adjustments reduce the biases in near-surface temperature simulation.
文摘An analysis of the minimum air temperature behavior was carried out for the southern tip of South America and the western side of the Antarctica Peninsula. Punta Arenas shows an overall annual warming of 0.15°C per decade during the 1960-2010 period, although this occurred mainly in the summer and winter seasons. The trend of the air temperature in the western side of the Antarctic Peninsula shows an increase until around 2000, but the warming rate during the last 2001-2010 decade has been less than previous decades;in particular, meteorological stations in King George Island show slight cooling. The lineal annual warming per decade as shown by Bellingshausen, Verndsky/Faraday and Rothera stations are 0.26°C ± 0.75°C, 0.55°C ± 1.26°C and 0.69°C ± 1.31°C;for the respectively, 1969-2010, 1951-2010 and 1978-2010 periods. These rates of warming are slightly lower than those found for the same stations but for the 1969-2000, 1951-2000 and 1978-2000 periods.
基金support from the National Natural Science Foundation of China (Grant Nos. 41975105 and 42375022)。
文摘According to the latest version(version 2.0) of the China global Merged Surface Temperature(CMST2.0) dataset, the global mean surface temperature(GMST) in the first half of 2023 reached its third warmest value since the period of instrumental observation began, being only slightly lower than the values recorded in 2016 and 2020, and historically record-breaking GMST emerged from May to July 2023. Further analysis also indicates that if the surface temperature in the last five months of 2023 approaches the average level of the past five years, the annual average surface temperature anomaly in 2023 of approximately 1.26°C will break the previous highest surface temperature, which was recorded in 2016of approximately 1.25°C(both values relative to the global pre-industrialization period, i.e., the average value from 1850 to1900). With El Ni?o triggering a record-breaking hottest July, record-breaking average annual temperatures will most likely become a reality in 2023.
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.ZDBS-LY-DQC010)the National Natural Science Foundation of China(Grant No.42175045).
文摘In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered.
基金supported by grants from the Key Project of Guangzhou (Grant No.202103000085)National Natural Science Foundation of China (Grant No.31902014)+1 种基金Guangzhou Science and Technology Project (Grant No.202102020502)Fruit and Vegetable Industry System Innovation Team Project of Guangdong (Grant No.2021KJ110)。
文摘High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. However, the bHLH TFs responsible for high-temperature tolerance in cucumbers have not been identified. We used transcriptome profiling to screen the high temperature-responsive candidate bHLH TFs in cucumber. Here, we found that the expression of 75 CsbHLH genes was altered under high-temperature stress. The expression of the CsSPT gene was induced by high temperatures in TT(Thermotolerant) cucumber plants. However, the Csspt mutant plants obtained by the CRISPR-Cas9 system showed severe thermosensitive symptoms, including wilted leaves with brown margins and reduced root density and cell activity.The Csspt mutant plants also exhibited elevated H_(2)O_(2) levels and down-regulated photosystem-related genes under normal conditions.Furthermore, there were high relative electrolytic leakage(REC), malondialdehyde(MDA), glutathione(GSH), and superoxide radical(O_(2)^(·-)) levels in the Csspt mutant plants, with decreased Proline content after the high-temperature treatment. Transcriptome analysis showed that the photosystem and chloroplast activities in Csspt mutant plants were extremely disrupted by the high-temperature stress compared with wildtype(WT) plants. Moreover, the plant hormone signal transduction, as well as MAPK and calcium signaling pathways were activated in Csspt mutant plants under high-temperature stress. The HSF and HSP family genes shared the same upregulated expression patterns in Csspt and WT plants under high-temperature conditions. However, most bHLH, NAC, and bZIP family genes were significantly down-regulated by heat in Csspt mutant plants. Thus, these results demonstrated that CsSPT regulated the high-temperature response by recruiting photosynthesis components, signaling pathway molecules, and transcription factors. Our results provide important insights into the heat response mechanism of CsSPT in cucumber and its potential as a target for breeding heat-resistant crops.
基金financially supported by the National Natural Science Foundation of China (Nos.51904339 and No.51974364)the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,China (No.2018TP1002)the Co-Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources,and the Postgraduate Independent Exploration and Innovation Project of Central South University,China (No.2018zzts224)。
文摘The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement.The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12℃. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures.
基金financially supported by the National Key R&D Program of China (No.2021YFB3700400)the National Natural Science Foundation of China (Nos.52074030,51904021,and 52174294)。
文摘A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.