The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated v...The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.展开更多
It is highly attractive to develop an efficient and flexible large eddy simulation(LES)technique for high-Reynolds-number atmospheric boundary layer(ABL)simulation using the low-order numerical scheme on a relatively ...It is highly attractive to develop an efficient and flexible large eddy simulation(LES)technique for high-Reynolds-number atmospheric boundary layer(ABL)simulation using the low-order numerical scheme on a relatively coarse grid,that could reproduce the logarithmic profile of the mean velocity and some key features of large-scale coherent structures in the outer layer.In this study,an improved near-wall correction scheme for the vertical gradient of the resolved streamwise velocity in the strain-rate tensor is proposed to calculate the eddy viscosity coefficient in the subgrid-scale(SGS)model.The LES code is realized with a second-order finite-difference scheme,the scale-dependent dynamic SGS stress model,the equilibrium wall stress model,and the proposed correction scheme.Very-high-Reynolds-number ABL flow simulation under the neutral stratification condition is conducted to assess the performance of the method in predicting the mean and fluctuating characteristics of the rough-wall turbulence.It is found that the logarithmic profile of the mean streamwise velocity and some key features of large-scale coherent structures can be reasonably predicted by adopting the proposed correction method and the low-order numerical scheme.展开更多
By large eddy simulation (LES), turbulent databases of channel flows at different Reynolds numbers were established. Then, the probability distribution functions of the streamwise and wall-normal velocity fluctuatio...By large eddy simulation (LES), turbulent databases of channel flows at different Reynolds numbers were established. Then, the probability distribution functions of the streamwise and wall-normal velocity fluctuations were obtained and compared with the corresponding normal distributions. By hypothesis test, the deviation from the normal distribution was analyzed quantitatively. The skewness and flatness factors were also calculated. And the variations of these two factors in the viscous sublayer, buffer layer and log-law layer were discussed. Still illustrated were the relations between the probability distribution functions and the burst events-sweep of high-speed fluids and ejection of low-speed fluidsIin the viscous sub-layer, buffer layer and loglaw layer. Finally the variations of the probability distribution functions with Reynolds number were examined.展开更多
Considering the actual magnetic field configuration in a Hall thruster, the effect of magnetic mirror on the radial profile of near-wall conductivity (NWC) is studied in this paper. The plasma electron dynamic proce...Considering the actual magnetic field configuration in a Hall thruster, the effect of magnetic mirror on the radial profile of near-wall conductivity (NWC) is studied in this paper. The plasma electron dynamic process is described by the test particle method. The Monte Carlo scheme is used to solve this model. The radial profile of electron mobility is obtained and the role of magnetic mirror in NWC is analysed both theoretically and numerically. The numerical results show that the electron mobility peak due to NWC is inversely proportional to the magnetic mirror ratio and the asymmetry of electron mobility along the radial direction gets greater when the magnetic mirror is considered. This effect indicates that apart from the disparity in the magnetic field strength, the difference in the magnetic mirror ratio near the inner and outer walls would actually augment the asymmetry of the radial profile of NWC in Hall thrusters.展开更多
In order to study the effect of different gap ratios on the thermofluid-dynamic field around a bluff body located in proximity to a heated wall,a series of experiments and numerical simulations have been conducted.The...In order to study the effect of different gap ratios on the thermofluid-dynamic field around a bluff body located in proximity to a heated wall,a series of experiments and numerical simulations have been conducted.The former were carried out using an open circulating water tank experimental platform and a single cylinder and square column as geometrical models(their characteristic length being D).The latter were based on the well-known SIMPLE algorithm for incompressible flow.The results show that the gap ratio is an important factor affecting the wake characteristics of near-wall bluff bodies.When the gap ratio is small,the influence of the wall on the bluff body wake is large.With an increase in the gap extension,periodic vortex shedding is enabled and heat transfer is strengthened accordingly;in addition,the vortex shedding period is larger for the square column.The square column displays hysteresis compared with the cylinder at the same gap ratio(the critical gap ratio of cylinder is 0.2~0.4,while that of square column is 0.40.6).展开更多
The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evalua...The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evaluate the capability of the curvilinear immersed boundary(CURVIB)method in predicting near-wall velocity and pressure fluctuations in turbulent channel flows.Simulation results show that quantities including the time-averaged streamwise velocity,the rms(root-mean-square)of velocity fluctuations,the rms of vorticity fluctuations,the shear stresses,and the correlation coefficients of u'and v"computed from the CURVIB simulations are in good agreement with those from the body-fitted simulations.More importantly,it is found that the time-averaged pressure,the rms and wavenumber-frequency spectra of pressure fluctuations computed using the CURVIB method agree well with the body-fitted results.展开更多
In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity ...In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity criteria controlling the mist flows were determined. For the flow along a curvilinear surface, the forms of the boundary layer equations differ from the regimes of presence and absence of the droplet inertia deposition. The numerical results were presented for the vapor-droplet boundary layer in the neighborhood of a stagnation point of a hot blunt body. It is demonstrated that, due to evaporation, a droplet-free region develops near the wall inside the boundary layer. On the upper edge of this region, the droplet radius tends to zero and the droplet number density becomes much higher than that in the free stream. The combined effect of the droplet evaporation and accumulation results in a significant enhancement of the heat transfer on the surface even for small mass concentration of the droplets in the free stream.展开更多
A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotic...A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotically into a high- Reynolds-number closure remote from the wall. The closure is applied to a pressure- driven 3D transient channel flow. The predicted results are in fair agreement with the DNS data.展开更多
The frequency-locked phenomenon commonly occurs in the vortex-induced vibration(VIV)of bluff bodies.Numerical simulation of this lock-in behavior is challenging,especially when the structure is positioned in close pro...The frequency-locked phenomenon commonly occurs in the vortex-induced vibration(VIV)of bluff bodies.Numerical simulation of this lock-in behavior is challenging,especially when the structure is positioned in close proximity to a solid boundary.To establish a robust simulator,an enhanced smoothed particle hydrodynamic(SPH)model is developed.The SPH model incorporates a particle shifting algorithm and a pressure correction algorithm to prevent cavity formation in the structure's wake area.A damping zone is also established near the outlet boundary to dissipate the vortices that shed from the structure.Additionally,GPU parallel technology is implemented to enhance the SPH model's computational efficiency.To validate the mo del,the predicted results are compared with the available refere nce data for flow past both stationary and oscillating cylinders.The verified SPH model is then employed to comparatively investigate the motion re sponse,lift characteristic,and vortex shedding mode of cylinders with and without accounting for the effect of boundary layers.Numerical analyses demonstrate that the developed SPH model is a proficient tool for efficiently simulating the vibration of near-wall bluff bodies at low Reynolds number.展开更多
Three-dimensional direct numerical simulations of the wake flow downstream of a near-wall circular cylinder at different gap ratios and boundary layer thicknesses are carried out by using the iterative immersed bounda...Three-dimensional direct numerical simulations of the wake flow downstream of a near-wall circular cylinder at different gap ratios and boundary layer thicknesses are carried out by using the iterative immersed boundary method.The non-dimensional gap between the cylinder and the wall,G/D=0.2,0.6 and 1.0,the non-dimensional boundary layer thickness,δ/D=0.0,0.7 and 1.6,the Reynolds number,Re=350,and the aspect ratio of the cylinder,L/D=25are adopted.High-resolution visualizations of the complex vortex structures at differentδ/D and G/D are presented.The transition of the streamwise vortex mode,the combined effects ofδ/D and G/D on the flow statistics,the pressure and shear stress distribution and the hydrodynamic forces are analyzed.Results show that with decreasing G/D and increasingδ/D,the gap flow and its vortex-shedding are significantly weakened,together with an elongated wake and an enlarged low-velocity area near the wall,leading to the wake mode transition from the two-sided to one-sided vortex-shedding.Different relative positions of the cylinder regarding the boundary layer alter the flow features of the shear layers.With an increase inδ/D,the front stagnation point shifts to the upper surface,and the distance between the flow divergence point and the maximum pressure position increases.The mean drag coefficient and r.m.s.values of drag and lift coefficients decrease with a decrease in G/D and an increase inδ/D,while the mean lift coefficient increases with decreasing G/D but decreases with increasingδ/D.展开更多
The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyp...The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyper-elastic membranes with negligible thickness. The numerical results show that with the increase of hematocrit, the near-wall approaching of platelets is enhanced, with which platelets exhibit larger deformation and orientation angle of its near-wall tank-treading motion, and the lateral force pushing platelets to the wall is increased with larger fluctuation amplitude. Meanwhile the near-wall approaching is reduced by increasing the stiffness of erythrocytes.展开更多
Double bubbles near a rigid wall surface collapse to produce a significant jet impact,with potential applications in surface cleaning and ultrasonic lithotripsy.However,the dynamic behaviors of near-wall bubbles remai...Double bubbles near a rigid wall surface collapse to produce a significant jet impact,with potential applications in surface cleaning and ultrasonic lithotripsy.However,the dynamic behaviors of near-wall bubbles remain unexplored.In this study,we investigate the jetting of a near-wall bubble induced by another tandem bubble.We define two dimensionless standoff distances,γ_(1),γ_(2),to represent the distances from the center of the near-wall bubble to the rigid wall and the center of controlling bubble to the center of the near-wall bubble,respectively.Our observations reveal three distinct jetting regimes for the near-wall bubble:transferred jetting,double jetting,and directed jetting.To further investigate the jetting mechanism,numerical simulations are conducted using the compressibleInterFoam solver in the open-source framework of OpenFOAM.A detailed analysis shows that the transferred jet flow is caused by the pinch-off resulting from the axial contraction velocity at the lower end of the near-wall bubble being greater than the vertical contraction velocity,leading to a maximum jet velocity of 682.58 m/s.In the case of double jetting,intense stretching between the controlling bubble and the wall leads to a pinch-off and a double jetting with a maximum velocity of 1096.29 m/s.The directed jet flow is caused by the downward movement of the high-pressure region generated by the premature collapse of the controlling bubble,with the maximum jet velocity reaching 444.62 m/s.展开更多
A 3-D wave model for the turbulent coherent structures in near-wall region is proposed. The transport nature of the Reynolds stresses and dissipation rate of the turbulence kinetic energy are shown via computation bas...A 3-D wave model for the turbulent coherent structures in near-wall region is proposed. The transport nature of the Reynolds stresses and dissipation rate of the turbulence kinetic energy are shown via computation based on the theoretical model. The mean velocity profile is also computed by using the same theoretical model. The theoretical results are in good agreement with those found from DNS, indicating that the theoretical model proposed can correctly describe the physical mechanism of turbulence in near wall region and it thus possibly opens a new way for turbulence modeling in this region.展开更多
The near-wall domain decomposition method(NDD)has proved to be very efficient for modeling near-wall fully turbulent flows.In this paper the NDD is extended to non-equilibrium regimeswith laminar-turbulent transition(...The near-wall domain decomposition method(NDD)has proved to be very efficient for modeling near-wall fully turbulent flows.In this paper the NDD is extended to non-equilibrium regimeswith laminar-turbulent transition(LTT)for the first time.The LTT is identified with the use of the e^(N)-method which is applied to both incompressible and compressible flows.TheNDD ismodified to take into account LTT in an efficientway.In addition,implementation of the intermittency expands the capabilities of NDD to model non-equilibrium turbulent flows with transition.Performance of the modified NDD approach is demonstrated on various test problems of subsonic and supersonic flows past a flat plate,a supersonic flow over a compression corner and a planar shock wave impinging on a turbulent boundary layer.The results of modeling with and without decomposition are compared in terms of wall friction and show good agreement with each other while NDD significantly reducing computational resources needed.It turns out that the NDD can reduce the computational time as much as three times while retaining practically the same accuracy of prediction.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11402088 and 51376062)the Fundamental Research Funds for the Central Universities(No.2014MS33)State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS15005)
文摘The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.
基金Project supported by the National Natural Science Foundation of China(No.11490551)the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2016-k13 and lzujbky-2018-k07)
文摘It is highly attractive to develop an efficient and flexible large eddy simulation(LES)technique for high-Reynolds-number atmospheric boundary layer(ABL)simulation using the low-order numerical scheme on a relatively coarse grid,that could reproduce the logarithmic profile of the mean velocity and some key features of large-scale coherent structures in the outer layer.In this study,an improved near-wall correction scheme for the vertical gradient of the resolved streamwise velocity in the strain-rate tensor is proposed to calculate the eddy viscosity coefficient in the subgrid-scale(SGS)model.The LES code is realized with a second-order finite-difference scheme,the scale-dependent dynamic SGS stress model,the equilibrium wall stress model,and the proposed correction scheme.Very-high-Reynolds-number ABL flow simulation under the neutral stratification condition is conducted to assess the performance of the method in predicting the mean and fluctuating characteristics of the rough-wall turbulence.It is found that the logarithmic profile of the mean streamwise velocity and some key features of large-scale coherent structures can be reasonably predicted by adopting the proposed correction method and the low-order numerical scheme.
文摘By large eddy simulation (LES), turbulent databases of channel flows at different Reynolds numbers were established. Then, the probability distribution functions of the streamwise and wall-normal velocity fluctuations were obtained and compared with the corresponding normal distributions. By hypothesis test, the deviation from the normal distribution was analyzed quantitatively. The skewness and flatness factors were also calculated. And the variations of these two factors in the viscous sublayer, buffer layer and log-law layer were discussed. Still illustrated were the relations between the probability distribution functions and the burst events-sweep of high-speed fluids and ejection of low-speed fluidsIin the viscous sub-layer, buffer layer and loglaw layer. Finally the variations of the probability distribution functions with Reynolds number were examined.
基金supported by Changjiang Scholars and Innovative Research Team in University of China (PCSIRT)(No.IRT0520)National Natural Science Foundation of China (No.60671012)
文摘Considering the actual magnetic field configuration in a Hall thruster, the effect of magnetic mirror on the radial profile of near-wall conductivity (NWC) is studied in this paper. The plasma electron dynamic process is described by the test particle method. The Monte Carlo scheme is used to solve this model. The radial profile of electron mobility is obtained and the role of magnetic mirror in NWC is analysed both theoretically and numerically. The numerical results show that the electron mobility peak due to NWC is inversely proportional to the magnetic mirror ratio and the asymmetry of electron mobility along the radial direction gets greater when the magnetic mirror is considered. This effect indicates that apart from the disparity in the magnetic field strength, the difference in the magnetic mirror ratio near the inner and outer walls would actually augment the asymmetry of the radial profile of NWC in Hall thrusters.
基金This work was supported by National Natural Science Foundation of China(Grant No.51476080).
文摘In order to study the effect of different gap ratios on the thermofluid-dynamic field around a bluff body located in proximity to a heated wall,a series of experiments and numerical simulations have been conducted.The former were carried out using an open circulating water tank experimental platform and a single cylinder and square column as geometrical models(their characteristic length being D).The latter were based on the well-known SIMPLE algorithm for incompressible flow.The results show that the gap ratio is an important factor affecting the wake characteristics of near-wall bluff bodies.When the gap ratio is small,the influence of the wall on the bluff body wake is large.With an increase in the gap extension,periodic vortex shedding is enabled and heat transfer is strengthened accordingly;in addition,the vortex shedding period is larger for the square column.The square column displays hysteresis compared with the cylinder at the same gap ratio(the critical gap ratio of cylinder is 0.2~0.4,while that of square column is 0.40.6).
基金This work was supported by the National Natural Science Foundation of China(NSFC)Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the Strategic Priority Research Program,Chinese Academy of Sciences(CAS)(No.XDB22040104).
文摘The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evaluate the capability of the curvilinear immersed boundary(CURVIB)method in predicting near-wall velocity and pressure fluctuations in turbulent channel flows.Simulation results show that quantities including the time-averaged streamwise velocity,the rms(root-mean-square)of velocity fluctuations,the rms of vorticity fluctuations,the shear stresses,and the correlation coefficients of u'and v"computed from the CURVIB simulations are in good agreement with those from the body-fitted simulations.More importantly,it is found that the time-averaged pressure,the rms and wavenumber-frequency spectra of pressure fluctuations computed using the CURVIB method agree well with the body-fitted results.
文摘In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity criteria controlling the mist flows were determined. For the flow along a curvilinear surface, the forms of the boundary layer equations differ from the regimes of presence and absence of the droplet inertia deposition. The numerical results were presented for the vapor-droplet boundary layer in the neighborhood of a stagnation point of a hot blunt body. It is demonstrated that, due to evaporation, a droplet-free region develops near the wall inside the boundary layer. On the upper edge of this region, the droplet radius tends to zero and the droplet number density becomes much higher than that in the free stream. The combined effect of the droplet evaporation and accumulation results in a significant enhancement of the heat transfer on the surface even for small mass concentration of the droplets in the free stream.
基金The project supported by the National Natural Science Foundation of China
文摘A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotically into a high- Reynolds-number closure remote from the wall. The closure is applied to a pressure- driven 3D transient channel flow. The predicted results are in fair agreement with the DNS data.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52101312 and 51979028)the Basic and Applied Basic Research Foundation of Guangdong Province (Grant Nos.2022A1515240014 and 2023A1515011000)+1 种基金the Basic and Applied Basic Research Project of Guangzhou (Grant No.202201010240)the Project supported by SKL of HESS (Grant No.HESS-2012)。
文摘The frequency-locked phenomenon commonly occurs in the vortex-induced vibration(VIV)of bluff bodies.Numerical simulation of this lock-in behavior is challenging,especially when the structure is positioned in close proximity to a solid boundary.To establish a robust simulator,an enhanced smoothed particle hydrodynamic(SPH)model is developed.The SPH model incorporates a particle shifting algorithm and a pressure correction algorithm to prevent cavity formation in the structure's wake area.A damping zone is also established near the outlet boundary to dissipate the vortices that shed from the structure.Additionally,GPU parallel technology is implemented to enhance the SPH model's computational efficiency.To validate the mo del,the predicted results are compared with the available refere nce data for flow past both stationary and oscillating cylinders.The verified SPH model is then employed to comparatively investigate the motion re sponse,lift characteristic,and vortex shedding mode of cylinders with and without accounting for the effect of boundary layers.Numerical analyses demonstrate that the developed SPH model is a proficient tool for efficiently simulating the vibration of near-wall bluff bodies at low Reynolds number.
基金financially supported by the National Key R&D Program of China (Grant No.2022YFB2603000)the National Natural Science Foundation of China (Grant Nos.51779172 and 52179076)。
文摘Three-dimensional direct numerical simulations of the wake flow downstream of a near-wall circular cylinder at different gap ratios and boundary layer thicknesses are carried out by using the iterative immersed boundary method.The non-dimensional gap between the cylinder and the wall,G/D=0.2,0.6 and 1.0,the non-dimensional boundary layer thickness,δ/D=0.0,0.7 and 1.6,the Reynolds number,Re=350,and the aspect ratio of the cylinder,L/D=25are adopted.High-resolution visualizations of the complex vortex structures at differentδ/D and G/D are presented.The transition of the streamwise vortex mode,the combined effects ofδ/D and G/D on the flow statistics,the pressure and shear stress distribution and the hydrodynamic forces are analyzed.Results show that with decreasing G/D and increasingδ/D,the gap flow and its vortex-shedding are significantly weakened,together with an elongated wake and an enlarged low-velocity area near the wall,leading to the wake mode transition from the two-sided to one-sided vortex-shedding.Different relative positions of the cylinder regarding the boundary layer alter the flow features of the shear layers.With an increase inδ/D,the front stagnation point shifts to the upper surface,and the distance between the flow divergence point and the maximum pressure position increases.The mean drag coefficient and r.m.s.values of drag and lift coefficients decrease with a decrease in G/D and an increase inδ/D,while the mean lift coefficient increases with decreasing G/D but decreases with increasingδ/D.
基金supported by the National Natural Science Foundation of China(11072155 and 11232010)Doctoral Fund of Ministry of Education of China(20100073120009)
文摘The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyper-elastic membranes with negligible thickness. The numerical results show that with the increase of hematocrit, the near-wall approaching of platelets is enhanced, with which platelets exhibit larger deformation and orientation angle of its near-wall tank-treading motion, and the lateral force pushing platelets to the wall is increased with larger fluctuation amplitude. Meanwhile the near-wall approaching is reduced by increasing the stiffness of erythrocytes.
基金supported by the National Natural Science Foundation of China(Grant Nos.12293003,12272382,12122214,12293000 and 12293004)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2022019).
文摘Double bubbles near a rigid wall surface collapse to produce a significant jet impact,with potential applications in surface cleaning and ultrasonic lithotripsy.However,the dynamic behaviors of near-wall bubbles remain unexplored.In this study,we investigate the jetting of a near-wall bubble induced by another tandem bubble.We define two dimensionless standoff distances,γ_(1),γ_(2),to represent the distances from the center of the near-wall bubble to the rigid wall and the center of controlling bubble to the center of the near-wall bubble,respectively.Our observations reveal three distinct jetting regimes for the near-wall bubble:transferred jetting,double jetting,and directed jetting.To further investigate the jetting mechanism,numerical simulations are conducted using the compressibleInterFoam solver in the open-source framework of OpenFOAM.A detailed analysis shows that the transferred jet flow is caused by the pinch-off resulting from the axial contraction velocity at the lower end of the near-wall bubble being greater than the vertical contraction velocity,leading to a maximum jet velocity of 682.58 m/s.In the case of double jetting,intense stretching between the controlling bubble and the wall leads to a pinch-off and a double jetting with a maximum velocity of 1096.29 m/s.The directed jet flow is caused by the downward movement of the high-pressure region generated by the premature collapse of the controlling bubble,with the maximum jet velocity reaching 444.62 m/s.
基金The authors wish to express their gratitude to Prof.Zhou Heng for detailed and extremely helpful comments on a draft of this paper.This work was supported by the Climbing Program and the National Science Foundation of China(Grant No.59476017)
文摘A 3-D wave model for the turbulent coherent structures in near-wall region is proposed. The transport nature of the Reynolds stresses and dissipation rate of the turbulence kinetic energy are shown via computation based on the theoretical model. The mean velocity profile is also computed by using the same theoretical model. The theoretical results are in good agreement with those found from DNS, indicating that the theoretical model proposed can correctly describe the physical mechanism of turbulence in near wall region and it thus possibly opens a new way for turbulence modeling in this region.
文摘The near-wall domain decomposition method(NDD)has proved to be very efficient for modeling near-wall fully turbulent flows.In this paper the NDD is extended to non-equilibrium regimeswith laminar-turbulent transition(LTT)for the first time.The LTT is identified with the use of the e^(N)-method which is applied to both incompressible and compressible flows.TheNDD ismodified to take into account LTT in an efficientway.In addition,implementation of the intermittency expands the capabilities of NDD to model non-equilibrium turbulent flows with transition.Performance of the modified NDD approach is demonstrated on various test problems of subsonic and supersonic flows past a flat plate,a supersonic flow over a compression corner and a planar shock wave impinging on a turbulent boundary layer.The results of modeling with and without decomposition are compared in terms of wall friction and show good agreement with each other while NDD significantly reducing computational resources needed.It turns out that the NDD can reduce the computational time as much as three times while retaining practically the same accuracy of prediction.