期刊文献+
共找到325篇文章
< 1 2 17 >
每页显示 20 50 100
Directional nearest neighbor query method for specified geographical direction space based on Voronoi diagram 被引量:3
1
作者 LI Song SONG Shuang +1 位作者 HAO Xiaohong ZHANG Liping 《High Technology Letters》 EI CAS 2022年第2期122-133,共12页
The existing nearest neighbor query methods cannot directly perform the nearest neighbor query of specified geographical direction space.In order to compensate the shortcomings of the existing methods,a directional ne... The existing nearest neighbor query methods cannot directly perform the nearest neighbor query of specified geographical direction space.In order to compensate the shortcomings of the existing methods,a directional nearest neighbor query method in specific direction space based on Voronoi diagram is put forward.This work studies two cases,i.e.the query point is static and the query point moves with a constant velocity.Under the static condition,the corresponding pruning method and the pruning algorithm of the specified direction nearest neighbor(pruning_SDNN algorithm)are proposed by combining the plane right-angle coordinate system with the north-west direction,and then according to the smallest external rectangle of Voronoi polygon,the specific query is made and the direction nearest neighbor query based on Voronoi rectangle(VR-DNN) algorithm is given.In the case of moving with a constant velocity,first of all,the combination of plane right angle coordinate system,geographical direction and circle are used,the query range is determined and pruning methods and the pruning algorithm of the direction nearest neighbor based on decision circle(pruning_DDNN algorithm) are put forward.Then,according to the different position of motion trajectory and Voronoi diagram,a specific query through the nature of Voronoi diagram is given.At last,the direction nearest neighbor query based on Voronoi diagram and motion trajectory(VM-DNN) algorithm is put forward.The theoretical research and experiments show that the proposed algorithm can effectively deal with the problem of the nearest neighbor query for a specified geographical direction space. 展开更多
关键词 nearest neighbor query direction Voronoi diagram rectangular plane coordinate system
下载PDF
APPROXIMATE QUERY AND CALCULATION OF RNN_k BASED ON VORONOI CELL 被引量:1
2
作者 郝忠孝 李博涵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期154-161,共8页
Reverse k nearest neighbor (RNNk) is a generalization of the reverse nearest neighbor problem and receives increasing attention recently in the spatial data index and query. RNNk query is to retrieve all the data po... Reverse k nearest neighbor (RNNk) is a generalization of the reverse nearest neighbor problem and receives increasing attention recently in the spatial data index and query. RNNk query is to retrieve all the data points which use a query point as one of their k nearest neighbors. To answer the RNNk of queries efficiently, the properties of the Voronoi cell and the space-dividing regions are applied. The RNNk of the given point can be found without computing its nearest neighbors every time by using the rank Voronoi cell. With the elementary RNNk query result, the candidate data points of reverse nearest neighbors can he further limited by the approximation with sweepline and the partial extension of query region Q. The approximate minimum average distance (AMAD) can be calculated by the approximate RNNk without the restriction of k. Experimental results indicate the efficiency and the effectiveness of the algorithm and the approximate method in three varied data distribution spaces. The approximate query and the calculation method with the high precision and the accurate recall are obtained by filtrating data and pruning the search space. 展开更多
关键词 computational geometry approximation query filtrating reverse k nearest neighbor (Rnnk) Voronoi cell
下载PDF
基于不规则区域划分方法的k-Nearest Neighbor查询算法 被引量:1
3
作者 张清清 李长云 +3 位作者 李旭 周玲芳 胡淑新 邹豪杰 《计算机系统应用》 2015年第9期186-190,共5页
随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细... 随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细介绍了一种基于不规则区域划分方法的改进型k NN查询算法,并利用对大规模数据集进行分布式并行计算的模型Map Reduce对该算法加以实现.实验结果与分析表明,Map Reduce框架下基于不规则区域划分方法的k NN查询算法可以获得较高的数据处理效率,并可以较好的支持大数据环境下数据的高效查询. 展开更多
关键词 k-nearest neighbor(k nn)查询算法 不规则区域划分方法 MAP REDUCE 大数据
下载PDF
Approximate aggregate nearest neighbor search on moving objects trajectories
4
作者 Mohammad Reza Abbasifard Hassan Naderi +1 位作者 Zohreh Fallahnejad Omid Isfahani Alamdari 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4246-4253,共8页
Aggregate nearest neighbor(ANN) search retrieves for two spatial datasets T and Q, segment(s) of one or more trajectories from the set T having minimum aggregate distance to points in Q. When interacting with large am... Aggregate nearest neighbor(ANN) search retrieves for two spatial datasets T and Q, segment(s) of one or more trajectories from the set T having minimum aggregate distance to points in Q. When interacting with large amounts of trajectories, this process would be very time-consuming due to consecutive page loads. An approximate method for finding segments with minimum aggregate distance is proposed which can improve the response time. In order to index large volumes of trajectories, scalable and efficient trajectory index(SETI) structure is used. But some refinements are provided to temporal index of SETI to improve the performance of proposed method. The experiments were performed with different number of query points and percentages of dataset. It is shown that proposed method besides having an acceptable precision, can reduce the computation time significantly. It is also shown that the main fraction of search time among load time, ANN and computing convex and centroid, is related to ANN. 展开更多
关键词 APPROXIMATE AGGREGATE k nearest neighbor(AAk nn) s
下载PDF
基于容忍因子的近似最近邻混合查询算法 被引量:1
5
作者 贺广福 薛源海 +3 位作者 陈翠婷 俞晓明 刘欣然 程学旗 《大数据》 2024年第1期17-34,共18页
近似最近邻搜索(ANNS)是计算机领域中一种重要的高效相似度搜索技术,可用于在大规模数据集中进行快速信息检索。随着人们对高精度信息检索的需求不断增长,同时使用结构化信息和非结构化信息进行混合查询的方式也得到了广泛应用。然而,... 近似最近邻搜索(ANNS)是计算机领域中一种重要的高效相似度搜索技术,可用于在大规模数据集中进行快速信息检索。随着人们对高精度信息检索的需求不断增长,同时使用结构化信息和非结构化信息进行混合查询的方式也得到了广泛应用。然而,基于近邻图的过滤贪心算法在混合查询时可能会因结构化约束条件的影响导致连通性降低,进而损害搜索精度。为此,提出了一种基于容忍因子的过滤贪心算法,通过容忍因子控制不满足结构化约束条件的顶点参与路由,在不改变索引结构的前提下维持原有近邻图的连通性,克服了结构化约束条件对检索精度的负面影响。实验结果证明,新算法可以在不同结构化约束强度下实现ANNS的高精度搜索,同时保持检索效率。该研究解决了基于近邻图的ANNS在混合查询场景中的问题,为大规模数据集的快速混合查询信息检索提供了一种有效的解决方案。 展开更多
关键词 混合查询 向量检索 最近邻搜索 过滤搜索
下载PDF
一种对时空信息的kNN查询处理方法 被引量:11
6
作者 李晨 申德荣 +3 位作者 朱命冬 寇月 聂铁铮 于戈 《软件学报》 EI CSCD 北大核心 2016年第9期2278-2289,共12页
互联网上每天都会产生大量的带地理位置标签和时间标签的信息,比如微博、新闻、团购等等,如何在众多的信息中找到在时间和空间地理位置上都满足用户查询需求的信息十分重要.针对这一需求,提出了一种对地理位置和时间信息的k近邻查询(ST-... 互联网上每天都会产生大量的带地理位置标签和时间标签的信息,比如微博、新闻、团购等等,如何在众多的信息中找到在时间和空间地理位置上都满足用户查询需求的信息十分重要.针对这一需求,提出了一种对地理位置和时间信息的k近邻查询(ST-k NN查询)处理方法.首先,利用时空相似度对数据对象的地理位置变量和时间变量进行映射变换,将数据对象映射到新的三维空间中,用三维空间中两点之间的距离相似度来近似代替两个对象之间实际的时空相似度;然后,针对这个三维空间设计了一种ST-Rtree(spatial temporal rtree)索引,该索引综合了空间因素和时间因素,保证在查询时每个对象至多遍历1次;最后,在该索引的基础上提出了一种精确的k近邻查询算法,并通过一次计算确定查询结果范围,从而找到前k个结果,保证了查询的高效性.基于大量数据集的实验,证明了该查询处理方法的高效性. 展开更多
关键词 地理位置 时间 时空相似度 索引 K最近邻查询
下载PDF
多样性感知的时空文本信息的KNN查询处理方法 被引量:9
7
作者 李晨 申德荣 +2 位作者 寇月 聂铁铮 于戈 《模式识别与人工智能》 EI CSCD 北大核心 2017年第1期64-72,共9页
如何在互联网上大量的带有地理位置标签和时间标签的信息中查找满足用户需求的信息十分重要.文中针对带有地理位置和时间标签的文本信息,提出多样性感知的时空文本信息的k近邻查询处理方法.首先,归一化处理数据对象的时空变量,并建立三... 如何在互联网上大量的带有地理位置标签和时间标签的信息中查找满足用户需求的信息十分重要.文中针对带有地理位置和时间标签的文本信息,提出多样性感知的时空文本信息的k近邻查询处理方法.首先,归一化处理数据对象的时空变量,并建立三维Rtree索引,有效融合数据对象的时间变量和空间变量.然后,提出多样性感知的k近邻查询算法(DST-KNN)和改进的DST-KNN(IDST-KNN).最后,通过基于大量数据集的实验验证文中查询处理方法的高效性和准确性. 展开更多
关键词 时空文本信息 K近邻查询 多样性
下载PDF
一种模糊-证据kNN分类方法 被引量:12
8
作者 吕锋 杜妮 文成林 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2390-2395,共6页
已有的以k-最近邻(kNearest Neighbor,kNN)规则为核心的分类算法,如模糊kNN(FuzzykNN,FkNN)和证据kNN(EvidentialkNN,EkNN)等,存在着两个问题:无法区别出样本特征的差异以及忽略了邻居距训练样本类中心距离的不同所带来的影响.为此,本... 已有的以k-最近邻(kNearest Neighbor,kNN)规则为核心的分类算法,如模糊kNN(FuzzykNN,FkNN)和证据kNN(EvidentialkNN,EkNN)等,存在着两个问题:无法区别出样本特征的差异以及忽略了邻居距训练样本类中心距离的不同所带来的影响.为此,本文提出一种模糊-证据kNN算法.首先,利用特征的模糊熵值确定每个特征的权重,基于加权欧氏距离选取k个邻居;然后,利用邻居的信息熵区别对待邻居并结合FkNN在表示信息和EkNN在融合决策方面的优势,采取先模糊化再融合的方法确定待分类样本的类别.本文的方法在UCI标准数据集上进行了测试,结果表明该方法优于已有算法. 展开更多
关键词 k-最近邻(k-nn) 加权欧氏距离 模糊熵 折扣因子 证据理论
下载PDF
面向双层传感网的隐私保护k-NN查询处理协议 被引量:4
9
作者 彭辉 陈红 +3 位作者 张晓莹 曾菊儒 吴云乘 王珊 《计算机学报》 EI CSCD 北大核心 2016年第5期872-892,共21页
无线传感器网络作为物联网感知层的核心组成部分,具有广阔的应用前景.然而,隐私泄露问题严重阻碍了传感器网络的发展.目前,传感器网络隐私保护技术已成为研究热点,其中隐私保护κ-NN(κ-Nearest Neighbor)查询协议是富有挑战性的问题.... 无线传感器网络作为物联网感知层的核心组成部分,具有广阔的应用前景.然而,隐私泄露问题严重阻碍了传感器网络的发展.目前,传感器网络隐私保护技术已成为研究热点,其中隐私保护κ-NN(κ-Nearest Neighbor)查询协议是富有挑战性的问题.文中提出了面向双层传感器网络的高效的隐私保护κ-NN查询协议.首先,为提升查询效率,基于定向存储策略给出了适用于双层传感网的κ-NN查询架构.其次,针对管理节点俘获攻击,提出了一种新颖的隐私保护数据编码机制,通过为真实数据附加编码的方式,保证在不泄露数据隐私的同时精确地完成查询处理.再次,针对节点共谋攻击,设计了基于代理节点的单向数据隐藏机制,通过破坏普通节点与管理节点间数据的关联性实现抵御共谋攻击的目标.理论分析和仿真实验验证了协议的安全性和有效性. 展开更多
关键词 物联网 无线传感器网络 隐私保护 k-nn查询 节点俘获 共谋攻击
下载PDF
一种保护用户隐私的路网兴趣点KNN查询方法 被引量:5
10
作者 周长利 马春光 李增鹏 《计算机应用研究》 CSCD 北大核心 2016年第1期262-265,共4页
针对查询K近邻兴趣点方法多基于欧氏空间的不实用问题,提出了适用于路网环境下的查询方法。利用四叉树索引划分路网节点,用户基于划分结果,计算所在路段指向的路网顶点,以该顶点为出发点查询路网距离下的K近邻目标兴趣点。用户构造包含... 针对查询K近邻兴趣点方法多基于欧氏空间的不实用问题,提出了适用于路网环境下的查询方法。利用四叉树索引划分路网节点,用户基于划分结果,计算所在路段指向的路网顶点,以该顶点为出发点查询路网距离下的K近邻目标兴趣点。用户构造包含这K个目标兴趣点的匿名框并注入虚假兴趣点查询请求,LBS服务器只返回匿名框内的兴趣点查询结果。该方法在控制通信开销的同时,能够保护用户的位置隐私和查询内容隐私。 展开更多
关键词 基于位置的服务 隐私保护 匿名框 K近邻查询
下载PDF
一种基于兴趣点分布的匿名框KNN查询方法 被引量:3
11
作者 朱顺痣 黄亮 +1 位作者 周长利 马樱 《电子学报》 EI CAS CSCD 北大核心 2016年第10期2423-2431,共9页
针对利用匿名框实现的兴趣点K近邻(KNN)查询带来的通信开销大、时延长等问题,提出了基于单一兴趣点Voronoi图划分和四叉树层次化组织的KNN查询方法.该方法根据兴趣点层次信息有针对性的构造查询匿名框用来获取详细查询信息,在保护位置... 针对利用匿名框实现的兴趣点K近邻(KNN)查询带来的通信开销大、时延长等问题,提出了基于单一兴趣点Voronoi图划分和四叉树层次化组织的KNN查询方法.该方法根据兴趣点层次信息有针对性的构造查询匿名框用来获取详细查询信息,在保护位置隐私的同时,降低了查询通信开销,同时注入虚假查询保护了用户的真实查询内容隐私.最后分别采用模拟地理数据和真实地理数据进行理论分析和有效性验证. 展开更多
关键词 位置隐私 基于位置的服务 匿名框 K近邻查询
下载PDF
面向轨迹数据流的KNN近似查询 被引量:4
12
作者 王考杰 郑雪峰 +1 位作者 宋一丁 曲阜平 《计算机工程》 CAS CSCD 北大核心 2011年第16期17-20,共4页
提出一种基于滑动窗口的K-最近邻(KNN)近似查询算法。将滑动窗口内数据通过聚类划分成若干大小不一的基本窗口,针对每个基本窗口给定一个采样率,对窗口内数据进行偏倚采样,形成数据流摘要,并基于该摘要,采用计算几何平面扫描算法执行分... 提出一种基于滑动窗口的K-最近邻(KNN)近似查询算法。将滑动窗口内数据通过聚类划分成若干大小不一的基本窗口,针对每个基本窗口给定一个采样率,对窗口内数据进行偏倚采样,形成数据流摘要,并基于该摘要,采用计算几何平面扫描算法执行分布式最近邻查询。仿真实验结果表明该算法有效,且具有较好的可扩展性。 展开更多
关键词 轨迹数据流 局部聚类 偏倚采样 数据摘要 K-最近邻查询
下载PDF
支持均匀缩放的不等长时间子序列查询方法
13
作者 熊浩然 何震瀛 《计算机工程》 CSCD 北大核心 2024年第1期60-67,共8页
作为时序数据分析中的基础技术之一,时间序列的子序列查询旨在寻找与目标序列相似的子序列。现有的子序列查询方法大多仅支持查询与目标序列长度相同的子序列,因而均匀缩放技术常被用于解决子序列查询中的不等长问题。但现有支持均匀缩... 作为时序数据分析中的基础技术之一,时间序列的子序列查询旨在寻找与目标序列相似的子序列。现有的子序列查询方法大多仅支持查询与目标序列长度相同的子序列,因而均匀缩放技术常被用于解决子序列查询中的不等长问题。但现有支持均匀缩放的子序列查询技术大多未考虑子序列的Z-标准化,且对查询效率仍有改善的空间。针对该问题,提出一种基于索引技术且支持均匀缩放的子序列查询方法。结合现有索引方法 ULISSE提供的树状数据结构,设计可保证非漏报的下界距离,为索引结构的剪枝提供理论保证,并利用索引中存储的元数据,提出精确K-近邻查询算法。所提方法适用于非归一化和归一化两种场景。实验结果表明,较UCR-US和ULISSE基线方法,该基于索引的不等长子序列查询方法在CAP、GAP两个真实数据集以及随机游走人工合成数据集上均实现了查询效率的显著提升,针对在非归一化和归一化两种场景下的不等长子序列查询,该方法的平均效率提升分别为2.33和2.51倍。 展开更多
关键词 时间序列 子序列查询 均匀缩放 索引 下界距离 K-近邻
下载PDF
基于k-NN和SCATS交通数据的路段行程时间估计方法 被引量:5
14
作者 姜桂艳 李琦 董硕 《西南交通大学学报》 EI CSCD 北大核心 2013年第2期343-349,共7页
为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏... 为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s. 展开更多
关键词 悉尼自适应交通控制系统 路段行程时间估计 K近邻算法 因子分析
下载PDF
道路网络中基于方向关系约束的CKNN查询 被引量:4
15
作者 孙海龙 王霓虹 王春艳 《计算机工程》 CAS CSCD 2014年第12期50-56,共7页
针对位置服务应用中,基于道路网络的移动对象连续K最近邻( CKNN )查询实时响应速度慢的问题,提出基于方向关系约束的移动对象CKNN查询算法CDR-CKNN。采用锥形模型建立方向关系表示模型,将查询中的方向关系谓词转化为开放图形,作为... 针对位置服务应用中,基于道路网络的移动对象连续K最近邻( CKNN )查询实时响应速度慢的问题,提出基于方向关系约束的移动对象CKNN查询算法CDR-CKNN。采用锥形模型建立方向关系表示模型,将查询中的方向关系谓词转化为开放图形,作为K最近邻查询的约束条件,快速过滤与查询结果无关的道路边,从而避免查找最近邻对象时对道路网的盲目扩展,缩短查找K最近邻对象的时间。实验结果表明,当道路网络规模增加时, CDR-CKNN算法查询性能比IMA/GMA算法提高2倍~3.3倍,其性能受兴趣点对象分布密度影响较小;采用八方向锥形模型比四方向锥形模型的算法查询效率提高1.5倍~3倍。 展开更多
关键词 方向关系模型 方向关系谓词 道路网络 连续K最近邻查询 开放图形 锥形模型
下载PDF
基于EK-NN的水声目标识别算法研究 被引量:3
16
作者 张扬 杨建华 侯宏 《声学技术》 CSCD 北大核心 2016年第1期15-19,共5页
针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指... 针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。 展开更多
关键词 水声目标识别 证据理论 证据K类近邻算法(EK-nn) 特征向量 组合规则
下载PDF
保护两方隐私的多类型的路网K近邻查询方案
17
作者 曾聪爱 刘亚丽 +2 位作者 陈书仪 朱秀萍 宁建廷 《计算机科学》 CSCD 北大核心 2024年第11期400-417,共18页
在车联网场景中,现有基于位置服务的隐私保护方案存在不支持多种类型K近邻兴趣点的并行查询、难以同时保护车辆用户和位置服务提供商(Location-Based Service Provider,LBSP)两方隐私、无法抵抗恶意攻击等问题。为了解决上述问题,提出... 在车联网场景中,现有基于位置服务的隐私保护方案存在不支持多种类型K近邻兴趣点的并行查询、难以同时保护车辆用户和位置服务提供商(Location-Based Service Provider,LBSP)两方隐私、无法抵抗恶意攻击等问题。为了解决上述问题,提出了一种保护两方隐私的多类型的路网K近邻查询方案MTKNN-MPP。将改进的k-out-of-n不经意传输协议应用于K近邻查询方案中,实现了在保护车辆用户的查询内容隐私和LBSP的兴趣点信息隐私的同时,一次查询多种类型K近邻兴趣点。通过增设车载单元缓存机制,降低了计算代价和通信开销。安全性分析表明,MTKNN-MPP方案能够有效地保护车辆用户的位置隐私、查询内容隐私以及LBSP的兴趣点信息隐私,可以保证车辆的匿名性,能够抵抗合谋攻击、重放攻击、推断攻击、中间人攻击等恶意攻击。性能评估表明,与现有典型的K近邻查询方案相比,MTKNN-MPP方案具有更高的安全性,且在单一类型K近邻查询和多种类型K近邻查询中,查询延迟分别降低了43.23%~93.70%,81.07%~93.93%。 展开更多
关键词 基于位置的服务 两方隐私保护 K近邻查询 不经意传输协议 车联网 多类型
下载PDF
公路网移动终端的KNN查询技术 被引量:2
18
作者 梁茹冰 刘琼 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期138-145,158,共9页
公路网中移动兴趣点(POIs)的查询处理是一个难点,目前的研究多基于欧氏距离对静态POIs进行处理,不能很好地适应移动环境下终端弱连接和频繁移动的需要.文中在公路网移动计算场景下,设计了一种存储分区数据对象的结构来表示公路网图形模... 公路网中移动兴趣点(POIs)的查询处理是一个难点,目前的研究多基于欧氏距离对静态POIs进行处理,不能很好地适应移动环境下终端弱连接和频繁移动的需要.文中在公路网移动计算场景下,设计了一种存储分区数据对象的结构来表示公路网图形模型,提出适用于移动终端的连续KNN查询(CQ-KNN)算法.该算法改进了Wang等提出的MKNN算法,将逐层渐近探测和检索边列表结合起来进行近邻查询,避免了MKNN算法在限定层数不够却不得不执行范围查询时所带来的开销;同时使用缓存策略来支持移动终端提交的连续查询请求,并给出基于广播位置失效报告的缓存一致性维护策略.仿真结果表明,CQ-KNN算法较MKNN算法有更快的CPU处理速度和更短的网络响应延时,并且能支持移动终端的离线KNN近似查询. 展开更多
关键词 公路网 移动终端 位置相关查询 K近邻 缓存 移动计算
下载PDF
基于Δ-tree的递归深度优先KNN查询算法 被引量:2
19
作者 刘艳 郝忠孝 《计算机工程》 CAS CSCD 北大核心 2011年第22期48-50,共3页
基于Δ-tree提出一种用于高维数据的主存K最近邻(KNN)查询算法。该算法利用递归调用方法深度优先遍历Δ-tree,找到距离查询点较近的叶子节点,并选择其中较优的KNN候选点进行查询,从而缩小修剪距离、提高查询速度。实验结果表明,与已有... 基于Δ-tree提出一种用于高维数据的主存K最近邻(KNN)查询算法。该算法利用递归调用方法深度优先遍历Δ-tree,找到距离查询点较近的叶子节点,并选择其中较优的KNN候选点进行查询,从而缩小修剪距离、提高查询速度。实验结果表明,与已有算法相比,该算法具有更高的查询效率。 展开更多
关键词 高维索引 主存 K最近邻查询 深度优先搜索
下载PDF
基于TBM的自适应模糊k-NN分类器 被引量:1
20
作者 刘邱云 付雪峰 吴根秀 《计算机工程》 CAS CSCD 北大核心 2009年第16期183-185,188,共4页
针对训练模式类标签不精确的识别问题,提出基于可传递信度模型的自适应模糊k-NN(k-Nearest Neighbor)分类器。利用可传递信度模型结合模糊集理论和可能性理论并运用pignistic变换,对待识别模式真正所属的类做出决策。采用梯度下降最小... 针对训练模式类标签不精确的识别问题,提出基于可传递信度模型的自适应模糊k-NN(k-Nearest Neighbor)分类器。利用可传递信度模型结合模糊集理论和可能性理论并运用pignistic变换,对待识别模式真正所属的类做出决策。采用梯度下降最小化误差函数,以实现参数的自适应学习。实验结果表明,该分类器误分类率低、鲁棒性强。 展开更多
关键词 可传递信度模型 自适应 k-nn分类器 pignistic概率 梯度下降
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部