期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
An Adaptive Steganographic Algorithm for Point Geometry Based on Nearest Neighbors Search
1
作者 Yuan-Yu Tsai Chi-Shiang Chan 《Journal of Electronic Science and Technology》 CAS 2012年第3期220-226,共7页
In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between p... In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation. 展开更多
关键词 ADAPTATION nearest neighbors search point geometry steganography.
下载PDF
Configurations of the Penrose Tiling beyond Nearest Neighbors
2
作者 彭本义 傅秀军 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第5期94-98,共5页
Starting from the eight vertex types in the Penrose tiling, we investigate the configurations beyond the nearest neighbors. The detailed structure of configurations and their concentrations in the whole pattern are ob... Starting from the eight vertex types in the Penrose tiling, we investigate the configurations beyond the nearest neighbors. The detailed structure of configurations and their concentrations in the whole pattern are obtained. It is found that the number of configuration types increases greatly when the observed clusters are becoming larger, which indicates that it is difficult to generate a perfect Penrose tiling according to the local matching rules. 展开更多
关键词 Configurations of the Penrose Tiling beyond nearest neighbors
下载PDF
The k Nearest Neighbors Estimator of the M-Regression in Functional Statistics 被引量:4
3
作者 Ahmed Bachir Ibrahim Mufrah Almanjahie Mohammed Kadi Attouch 《Computers, Materials & Continua》 SCIE EI 2020年第12期2049-2064,共16页
It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when th... It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach. 展开更多
关键词 Functional data analysis quantile regression kNN method uniform nearest neighbor(UNN)consistency functional nonparametric statistics almost complete convergence rate
下载PDF
Intrusion Detection Algorithm Based on Density,Cluster Centers,and Nearest Neighbors 被引量:6
4
作者 Xiujuan Wang Chenxi Zhang Kangfeng Zheng 《China Communications》 SCIE CSCD 2016年第7期24-31,共8页
Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic fire... Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic firewalls.Many intrusion detection methods are processed through machine learning.Previous literature has shown that the performance of an intrusion detection method based on hybrid learning or integration approach is superior to that of single learning technology.However,almost no studies focus on how additional representative and concise features can be extracted to process effective intrusion detection among massive and complicated data.In this paper,a new hybrid learning method is proposed on the basis of features such as density,cluster centers,and nearest neighbors(DCNN).In this algorithm,data is represented by the local density of each sample point and the sum of distances from each sample point to cluster centers and to its nearest neighbor.k-NN classifier is adopted to classify the new feature vectors.Our experiment shows that DCNN,which combines K-means,clustering-based density,and k-NN classifier,is effective in intrusion detection. 展开更多
关键词 intrusion detection DCNN density cluster center nearest neighbor
下载PDF
Time-Series Forecasting Using Autoregression Enhanced k-Nearest Neighbors Method 被引量:1
5
作者 潘峰 赵海波 刘华山 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第4期434-442,共9页
This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear... This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear forecasting techniques. One metric redefines the distance in k-nearest neighbors based on the coefficients of autoregression (AR) in time series. Meanwhile, an improvement to Kulesh's adaptive metrics in the nearest neighbors is also presented. To evaluate the performance of the two proposed metrics, three types of time-series data, namely deterministic synthetic data, chaotic time-series data and real time-series data, are predicted. Experimental results show the superiority of the proposed AR-enhanced k-nearest neighbors methods to the traditional k-nearest neighbors metric and Kulesh's adaptive metrics. 展开更多
关键词 time series forecasting nearest neighbors method autoregression (AR) metrics
原文传递
Probability Distribution of Arithmetic Average of China Aviation Network Edge Vertices Nearest Neighbor Average Degree Value and Its Evolutionary Trace Based on Complex Network
6
作者 Cheng Xiangjun Yang Fang Xiong Zhihua 《Journal of Traffic and Transportation Engineering》 2024年第4期163-174,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average... In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average degree values of China aviation network were studied based on the statistics data of China civil aviation network in 1988,1994,2001,2008 and 2015.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network.Based on the statistical data,the arithmetic averages of edge vertices nearest neighbor average degree values of China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Using the probability statistical analysis method,it was found that the arithmetic average of edge vertices nearest neighbor average degree values had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace. 展开更多
关键词 Complex network China aviation network arithmetic average of edge vertices nearest neighbor average degree value linear evolution trace
下载PDF
A Pattern Classification Model for Vowel Data Using Fuzzy Nearest Neighbor
7
作者 Monika Khandelwal Ranjeet Kumar Rout +4 位作者 Saiyed Umer Kshira Sagar Sahoo NZ Jhanjhi Mohammad Shorfuzzaman Mehedi Masud 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3587-3598,共12页
Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. ... Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. One of the problemsobserved in the fuzzification of an unknown pattern is that importance is givenonly to the known patterns but not to their features. In contrast, features of thepatterns play an essential role when their respective patterns overlap. In this paper,an optimal fuzzy nearest neighbor model has been introduced in which a fuzzifi-cation process has been carried out for the unknown pattern using k nearest neighbor. With the help of the fuzzification process, the membership matrix has beenformed. In this membership matrix, fuzzification has been carried out of the features of the unknown pattern. Classification results are verified on a completelyllabelled Telugu vowel data set, and the accuracy is compared with the differentmodels and the fuzzy k nearest neighbor algorithm. The proposed model gives84.86% accuracy on 50% training data set and 89.35% accuracy on 80% trainingdata set. The proposed classifier learns well enough with a small amount of training data, resulting in an efficient and faster approach. 展开更多
关键词 nearest neighbors fuzzy classification patterns recognition reasoning rule membership matrix
下载PDF
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
8
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 Face recognition Support vector machine nearest neighbor classifier Principal component analysis.
下载PDF
FEW-NNN: A Fuzzy Entropy Weighted Natural Nearest Neighbor Method for Flow-Based Network Traffic Attack Detection 被引量:7
9
作者 Liangchen Chen Shu Gao +2 位作者 Baoxu Liu Zhigang Lu Zhengwei Jiang 《China Communications》 SCIE CSCD 2020年第5期151-167,共17页
Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the foc... Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the focus of many initiatives. Effectively analyzing massive network security data with high dimensions for suspicious flow diagnosis is a huge challenge. In addition, the uneven distribution of network traffic does not fully reflect the differences of class sample features, resulting in the low accuracy of attack detection. To solve these problems, a novel approach called the fuzzy entropy weighted natural nearest neighbor(FEW-NNN) method is proposed to enhance the accuracy and efficiency of flowbased network traffic attack detection. First, the FEW-NNN method uses the Fisher score and deep graph feature learning algorithm to remove unimportant features and reduce the data dimension. Then, according to the proposed natural nearest neighbor searching algorithm(NNN_Searching), the density of data points, each class center and the smallest enclosing sphere radius are determined correspondingly. Finally, a fuzzy entropy weighted KNN classification method based on affinity is proposed, which mainly includes the following three steps: 1、 the feature weights of samples are calculated based on fuzzy entropy values, 2、 the fuzzy memberships of samples are determined based on affinity among samples, and 3、 K-neighbors are selected according to the class-conditional weighted Euclidean distance, the fuzzy membership value of the testing sample is calculated based on the membership of k-neighbors, and then all testing samples are classified according to the fuzzy membership value of the samples belonging to each class;that is, the attack type is determined. The method has been applied to the problem of attack detection and validated based on the famous KDD99 and CICIDS-2017 datasets. From the experimental results shown in this paper, it is observed that the FEW-NNN method improves the accuracy and efficiency of flow-based network traffic attack detection. 展开更多
关键词 fuzzy entropy weighted KNN network attack detection fuzzy membership natural nearest neighbor network security intrusion detection system
下载PDF
Directional nearest neighbor query method for specified geographical direction space based on Voronoi diagram 被引量:3
10
作者 LI Song SONG Shuang +1 位作者 HAO Xiaohong ZHANG Liping 《High Technology Letters》 EI CAS 2022年第2期122-133,共12页
The existing nearest neighbor query methods cannot directly perform the nearest neighbor query of specified geographical direction space.In order to compensate the shortcomings of the existing methods,a directional ne... The existing nearest neighbor query methods cannot directly perform the nearest neighbor query of specified geographical direction space.In order to compensate the shortcomings of the existing methods,a directional nearest neighbor query method in specific direction space based on Voronoi diagram is put forward.This work studies two cases,i.e.the query point is static and the query point moves with a constant velocity.Under the static condition,the corresponding pruning method and the pruning algorithm of the specified direction nearest neighbor(pruning_SDNN algorithm)are proposed by combining the plane right-angle coordinate system with the north-west direction,and then according to the smallest external rectangle of Voronoi polygon,the specific query is made and the direction nearest neighbor query based on Voronoi rectangle(VR-DNN) algorithm is given.In the case of moving with a constant velocity,first of all,the combination of plane right angle coordinate system,geographical direction and circle are used,the query range is determined and pruning methods and the pruning algorithm of the direction nearest neighbor based on decision circle(pruning_DDNN algorithm) are put forward.Then,according to the different position of motion trajectory and Voronoi diagram,a specific query through the nature of Voronoi diagram is given.At last,the direction nearest neighbor query based on Voronoi diagram and motion trajectory(VM-DNN) algorithm is put forward.The theoretical research and experiments show that the proposed algorithm can effectively deal with the problem of the nearest neighbor query for a specified geographical direction space. 展开更多
关键词 nearest neighbor query direction Voronoi diagram rectangular plane coordinate system
下载PDF
Damage detection of 3D structures using nearest neighbor search method 被引量:1
11
作者 Ali Abasi Vahid Harsij Ahmad Soraghi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第3期705-725,共21页
An innovative damage identification method using the nearest neighbor search method to assess 3D structures is presented.The frequency response function was employed as the input parameters to detect the severity and ... An innovative damage identification method using the nearest neighbor search method to assess 3D structures is presented.The frequency response function was employed as the input parameters to detect the severity and place of damage in 3D spaces since it includes the most dynamic characteristics of the structures.Two-dimensional principal component analysis was utilized to reduce the size of the frequency response function data.The nearest neighbor search method was employed to detect the severity and location of damage in different damage scenarios.The accuracy of the approach was verified using measured data from an experimental test;moreover,two asymmetric 3D numerical examples were considered as the numerical study.The superiority of the method was demonstrated through comparison with the results of damage identification by using artificial neural network.Different levels of white Gaussian noise were used for polluting the frequency response function data to investigate the robustness of the methods against noise-polluted data.The results indicate that both methods can efficiently detect the damage properties including its severity and location with high accuracy in the absence of noise,but the nearest neighbor search method is more robust against noisy data than the artificial neural network. 展开更多
关键词 damage identification damage index frequency response function two-dimensional principal component analysis nearest neighbor search artificial neural network white Gaussian noise
下载PDF
Frequency and Correlation of Nearest Neighboring Nucleotides in Human Genome 被引量:1
12
作者 Neng-zhi Jin Zi-xian Liu Wen-yuan Qiu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第1期27-33,共7页
Zipf's approach in linguistics is utilized to analyze the statistical features of frequency and correlation of 16 nearest neighboring nucleotides (AA, AC, AG, …, TT) in 12 human chro- mosomes (Y, 22, 21, 20, 19, ... Zipf's approach in linguistics is utilized to analyze the statistical features of frequency and correlation of 16 nearest neighboring nucleotides (AA, AC, AG, …, TT) in 12 human chro- mosomes (Y, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, and 12). It is found that these statistical features of nearest neighboring nucleotides in human genome: (i) the frequency distribution is a linear function, and (ii) the correlation distribution is an inverse function. The coefficients of the linear function and inverse function depend on the GC content. It proposes the correlation distribution of nearest neighboring nucleotides for the first time and extends the descriptor about nearest neighboring nueleotides. 展开更多
关键词 Zipf's law nearest neighboring nucleotide Frequency distribution Correlation distribution
下载PDF
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:1
13
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
下载PDF
A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix
14
作者 李文法 Wang Gongming +1 位作者 Ma Nan Liu Hongzhe 《High Technology Letters》 EI CAS 2016年第3期241-247,共7页
Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculat... Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing. 展开更多
关键词 nearest neighbor search high-dimensional data SIMILARITY indexing tree NPsim KD-TREE SR-tree Munsell
下载PDF
Improved locality-sensitive hashing method for the approximate nearest neighbor problem
15
作者 陆颖华 马廷淮 +3 位作者 钟水明 曹杰 王新 Abdullah Al-Dhelaane 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期217-225,共9页
In recent years, the nearest neighbor search (NNS) problem has been widely used in various interesting applications. Locality-sensitive hashing (LSH), a popular algorithm for the approximate nearest neighbor probl... In recent years, the nearest neighbor search (NNS) problem has been widely used in various interesting applications. Locality-sensitive hashing (LSH), a popular algorithm for the approximate nearest neighbor problem, is proved to be an efficient method to solve the NNS problem in the high-dimensional and large-scale databases. Based on the scheme of p-stable LSH, this paper introduces a novel improvement algorithm called randomness-based locality-sensitive hashing (RLSH) based on p-stable LSH. Our proposed algorithm modifies the query strategy that it randomly selects a certain hash table to project the query point instead of mapping the query point into all hash tables in the period of the nearest neighbor query and reconstructs the candidate points for finding the nearest neighbors. This improvement strategy ensures that RLSH spends less time searching for the nearest neighbors than the p-stable LSH algorithm to keep a high recall. Besides, this strategy is proved to promote the diversity of the candidate points even with fewer hash tables. Experiments are executed on the synthetic dataset and open dataset. The results show that our method can cost less time consumption and less space requirements than the p-stable LSH while balancing the same recall. 展开更多
关键词 approximate nearest neighbor problem locality-sensitive hashing
下载PDF
A LAW OF THE ITERATED LOGARITHM FOR NEAREST NEIGHBOR ESTIMATION OF MULTIVARIATE DENSITY FUNCTION
16
作者 洪圣岩 陈规景 +1 位作者 孔繁超 高集体 《Acta Mathematica Scientia》 SCIE CSCD 1992年第4期472-478,共7页
Let X be a d-dimensional random vector with unknown density function f(z) = f (z1, ..., z(d)), and let f(n) be teh nearest neighbor estimator of f proposed by Loftsgaarden and Quesenberry (1965). In this paper, we est... Let X be a d-dimensional random vector with unknown density function f(z) = f (z1, ..., z(d)), and let f(n) be teh nearest neighbor estimator of f proposed by Loftsgaarden and Quesenberry (1965). In this paper, we established the law of the iterated logarithm of f(n) for general case of d greater-than-or-equal-to 1, which gives the exact pointwise strong convergence rate of f(n). 展开更多
关键词 A LAW OF THE ITERATED LOGARITHM FOR nearest NEIGHBOR ESTIMATION OF MULTIVARIATE DENSITY FUNCTION exp
下载PDF
Nonlinear Relationship and Its Evolutionary Trace between Node Degree and Nearest Neighbor Average Degree of China Aviation Network Based on Complex Network
17
作者 Cheng Xiangjun Zhang Chunyue Zhang Xiaoxuan 《Journal of Traffic and Transportation Engineering》 2023年第4期159-171,共13页
In order to reveal the complex network characteristics and evolution principle of China aviation network, the relationship between the node degree and the nearest neighbor average degree and its evolution trace of Chi... In order to reveal the complex network characteristics and evolution principle of China aviation network, the relationship between the node degree and the nearest neighbor average degree and its evolution trace of China aviation network in 1988, 1994, 2001, 2008 and 2015 were studied. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the airline as the edge of the network. According to the statistical data, the node nearest neighbor average degree of China aviation network in 1988, 1994, 2001, 2008 and 2015 was calculated. Through regression analysis, it was found that the node degree had a negative exponential relationship with the nearest neighbor average degree, and the two parameters of the negative exponential relationship had linear evolution trace. 展开更多
关键词 China aviation network complex network node degree nearest neighbor average degree negative exponential relationship evolution trace.
下载PDF
Probability Distribution of China Aviation Network Nearest Neighbor Average Degree and Its Evolutionary Trace Based on Complex Network
18
作者 Cheng Xiangjun Zhang Chunyue Guo Jianyuan 《Journal of Traffic and Transportation Engineering》 2023年第3期95-106,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of node nearest neighbor average degree of China aviation netwo... In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of node nearest neighbor average degree of China aviation network were studied based on the statistics data of China civil aviation network in 1988,1994,2001,2008 and 2015.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network.Based on the statistical data,the nearest neighbor average degrees of nodes in China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Using the probability statistical analysis method,it was found that the nearest neighbor average degree had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace. 展开更多
关键词 Complex network China aviation network nearest neighbor average degree normal probability distribution linear evolution trace
下载PDF
Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection
19
作者 Islam Zada Mohammed Naif Alatawi +4 位作者 Syed Muhammad Saqlain Abdullah Alshahrani Adel Alshamran Kanwal Imran Hessa Alfraihi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2917-2939,共23页
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malwar... Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats. 展开更多
关键词 Security and privacy challenges in the context of requirements engineering supervisedmachine learning malware detection windows systems comparative analysis Gaussian Naive Bayes K nearest neighbors Stochastic Gradient Descent Classifier Decision Tree
下载PDF
EDGEWORTH EXPANSION FOR NEAREST NEIGHBOR- KERNEL ESTIMATE AND RANDOM WEIGHTING APPROXIMATION OF CONDITIONAL DENSITY
20
作者 Yu ZhaopingInstitute of Electronic Technique,Zhengzhou450 0 0 4 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2000年第2期167-172,共6页
In this paper,Edgeworth expansion for the nearest neighbor\|kernel estimate and random weighting approximation of conditional density are given and the consistency and convergence rate are proved.
关键词 Random weighting method Edgeworth expansion nearest neighbor\|kernel estimate.
全文增补中
上一页 1 2 5 下一页 到第
使用帮助 返回顶部