The classical countable summation type Hahn-Schur theorem is a famous result in summation theory and measure theory. An interesting problem is whether the theorem can be generalized to non-countable summation case? In...The classical countable summation type Hahn-Schur theorem is a famous result in summation theory and measure theory. An interesting problem is whether the theorem can be generalized to non-countable summation case? In this paper, we show that the answer is true.展开更多
In this paper, some conclusions related to the prime number theorem, such as the Mertens formula are improved by the improved Abelian summation formula, and some problems such as “Dirichlet” function and “W(n)” fu...In this paper, some conclusions related to the prime number theorem, such as the Mertens formula are improved by the improved Abelian summation formula, and some problems such as “Dirichlet” function and “W(n)” function are studied.展开更多
The main aim of this paper is to derive some new summation theorems for terminating and truncated Clausen’s hypergeometric series with unit argument,when one numerator parameter and one denominator parameter are nega...The main aim of this paper is to derive some new summation theorems for terminating and truncated Clausen’s hypergeometric series with unit argument,when one numerator parameter and one denominator parameter are negative integers.Further,using our truncated summation theorems,we obtain the Mellin transforms of the product of exponential function and Goursat’s truncated hypergeometric function.展开更多
In this paper some novel integrals associated with the product of classical Hermite's polynomials ∫-∞+∞(x2)mexp(-x2){Hr(x)}2dx,∫0∞exp(-x2)H2k(x)H2s+1(x)dx,∫0∞exp(-x2)H2k(x)H2s(x)dx and ∫0...In this paper some novel integrals associated with the product of classical Hermite's polynomials ∫-∞+∞(x2)mexp(-x2){Hr(x)}2dx,∫0∞exp(-x2)H2k(x)H2s+1(x)dx,∫0∞exp(-x2)H2k(x)H2s(x)dx and ∫0∞exp(-x2)H2k+1(x)H2s+1(x)dx, are evaluated using hypergeometric approach and Laplace transform method, which is a different approach from the approaches given by the other authors in the field of spe- cial functions. Also the results may be of significant nature, and may yield numerous other interesting integrals involving the product of classical Hermite's polynomials by suitable simplifications of arbitrary parameters.展开更多
基金Supported by Research Fund of Kumoh National Institute of Technology(M1100)
文摘The classical countable summation type Hahn-Schur theorem is a famous result in summation theory and measure theory. An interesting problem is whether the theorem can be generalized to non-countable summation case? In this paper, we show that the answer is true.
文摘In this paper, some conclusions related to the prime number theorem, such as the Mertens formula are improved by the improved Abelian summation formula, and some problems such as “Dirichlet” function and “W(n)” function are studied.
文摘The main aim of this paper is to derive some new summation theorems for terminating and truncated Clausen’s hypergeometric series with unit argument,when one numerator parameter and one denominator parameter are negative integers.Further,using our truncated summation theorems,we obtain the Mellin transforms of the product of exponential function and Goursat’s truncated hypergeometric function.
文摘In this paper some novel integrals associated with the product of classical Hermite's polynomials ∫-∞+∞(x2)mexp(-x2){Hr(x)}2dx,∫0∞exp(-x2)H2k(x)H2s+1(x)dx,∫0∞exp(-x2)H2k(x)H2s(x)dx and ∫0∞exp(-x2)H2k+1(x)H2s+1(x)dx, are evaluated using hypergeometric approach and Laplace transform method, which is a different approach from the approaches given by the other authors in the field of spe- cial functions. Also the results may be of significant nature, and may yield numerous other interesting integrals involving the product of classical Hermite's polynomials by suitable simplifications of arbitrary parameters.