In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ...In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.展开更多
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model i...Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.展开更多
基金The National Natural Science Foundation of China(No.51209040,51279134)the Natural Science Foundation of Jiangsu Province(No.BK2012341)+1 种基金the Fundamental Research Funds for the Central Universities(No.SJLX_0087)the Research Fund of Nanjing Hydraulic Research Institute(No.Y213012)
文摘In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.
基金Supported by the National Science Fund for Distinguished Young Scholars (No 40425015)the Knowledge Innovation Programs of the Chinese Academy of Sciences (Nos KZCX1-YW-12 and KZCX2-YW-201)
文摘Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.