Hippocampal neurons undergo various forms of cell death after status epilepticus.Necrostatin-1 specifically inhibits necroptosis mediated by receptor interacting protein kinase 1 (RIP1) and RIP3 receptors.However,ther...Hippocampal neurons undergo various forms of cell death after status epilepticus.Necrostatin-1 specifically inhibits necroptosis mediated by receptor interacting protein kinase 1 (RIP1) and RIP3 receptors.However,there are no reports of necroptosis in mouse models of status epilepticus.Therefore,in this study,we investigated the effects of necrostatin-1 on hippocampal neurons in mice with status epilepticus,and,furthermore,we tested different amounts of the compound to identify the optimal concentration for inhibiting necroptosis and apoptosis.A mouse model of status epilepticus was produced by intraperitoneal injection of kainic acid,12 mg/kg.Different concentrations of necrostatin- 1 (10,20,40,and 80 μM) were administered into the lateral ventricle 15 minutes before kainic acid injection.Hippocampal damage was assessed by hematoxylin-eosin staining 24 hours after the model was successfully produced.Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining,western blot assay and immunohistochemistry were used to evaluate the expression of apoptosis-related and necroptosis-related proteins.Necrostatin-1 alleviated damage to hippocampal tissue in the mouse model of epilepsy.The 40 μM concentration of necrostatin-1 significantly decreased the number of apoptotic cells in the hippocampal CA1 region.Furthermore,necrostatin-1 significantly downregulated necroptosis-related proteins (MLKL,RIP1,and RIP3) and apoptosis-related proteins (cleaved-Caspase-3,Bax),and it upregulated the expression of anti-apoptotic protein Bcl-2.Taken together,our findings show that necrostatin-1 effectively inhibits necroptosis and apoptosis in mice with status epilepticus,with the 40 μM concentration of the compound having an optimal effect.The experiments were approved by the Animal Ethics Committee of Fujian Medical University,China (approval No.2016-032) on November 9,2016.展开更多
Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 c...Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range(5–30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease.展开更多
基金supported by the Key Discipline Construction Project of the Union Hospital of Fujian Province,China,No.Δ211002#
文摘Hippocampal neurons undergo various forms of cell death after status epilepticus.Necrostatin-1 specifically inhibits necroptosis mediated by receptor interacting protein kinase 1 (RIP1) and RIP3 receptors.However,there are no reports of necroptosis in mouse models of status epilepticus.Therefore,in this study,we investigated the effects of necrostatin-1 on hippocampal neurons in mice with status epilepticus,and,furthermore,we tested different amounts of the compound to identify the optimal concentration for inhibiting necroptosis and apoptosis.A mouse model of status epilepticus was produced by intraperitoneal injection of kainic acid,12 mg/kg.Different concentrations of necrostatin- 1 (10,20,40,and 80 μM) were administered into the lateral ventricle 15 minutes before kainic acid injection.Hippocampal damage was assessed by hematoxylin-eosin staining 24 hours after the model was successfully produced.Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining,western blot assay and immunohistochemistry were used to evaluate the expression of apoptosis-related and necroptosis-related proteins.Necrostatin-1 alleviated damage to hippocampal tissue in the mouse model of epilepsy.The 40 μM concentration of necrostatin-1 significantly decreased the number of apoptotic cells in the hippocampal CA1 region.Furthermore,necrostatin-1 significantly downregulated necroptosis-related proteins (MLKL,RIP1,and RIP3) and apoptosis-related proteins (cleaved-Caspase-3,Bax),and it upregulated the expression of anti-apoptotic protein Bcl-2.Taken together,our findings show that necrostatin-1 effectively inhibits necroptosis and apoptosis in mice with status epilepticus,with the 40 μM concentration of the compound having an optimal effect.The experiments were approved by the Animal Ethics Committee of Fujian Medical University,China (approval No.2016-032) on November 9,2016.
基金supported by grants from the Science and Technology Project of Xuzhou City in China,No.XM12B017the Priority Academic Program Development of Jiangsu Higher Education Institutions in China
文摘Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range(5–30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease.