期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Negative differential friction coefficients of two-dimensional commensurate contacts dominated by electronic phase transition
1
作者 Kun Liu Jiangtao Cheng +7 位作者 Xingju Zhao Yandi Zhu Xiaoyan Ren Jinlei Shi Zhengxiao Guo Chongxin Shan Hongjie Liu Shunfang Li 《Nano Research》 SCIE EI CSCD 2022年第6期5758-5766,共9页
Friction force(f)usually increases with the normal load(N)macroscopically,according to the classic law of Da Vinci–Amontons(f=μN),with a positive and finite friction coefficient(μ).Herein near-zero and negative dif... Friction force(f)usually increases with the normal load(N)macroscopically,according to the classic law of Da Vinci–Amontons(f=μN),with a positive and finite friction coefficient(μ).Herein near-zero and negative differential friction(ZNDF)coefficients are discovered in two-dimensional(2D)van der Waals(vdW)magnetic CrI_(3)commensurate contacts.It is identified that the ferromagnetic–antiferromagnetic phase transition of the interlayer couplings of the bilayer CrI_(3)can significantly reduce the interfacial sliding energy barriers and thus contribute to ZNDF.Moreover,phase transition between the in-plane(p_(x)and p_(y))and out-of-plane(p_(z))wave-functions dominates the sliding barrier evolutions,which is attributed to the delicate interplays among the interlayer vdW,electrostatic interactions,and the intralayer deformation of the CrI_(3)layers under external load.The present findings may motivate a new concept of slide-spintronics and are expected to play an instrumental role in design of novel magnetic solid lubricants applied in various spintronic nano-devices. 展开更多
关键词 first-principles calculations two-dimensional(2D)magnetic materials CrI_(3) negative differential friction coefficient
原文传递
An improved method for evaluating the rotational speed stability of a hydro-viscous clutch in mixed lubrication 被引量:2
2
作者 Shou-Wen YAO Qian LIU +1 位作者 Hong-Wei CUI Shan-Shan FENG 《Friction》 SCIE EI CAS CSCD 2015年第1期47-55,共9页
Rotational speed stability is an important evaluation indicator of the performance of a hydro-viscous clutch(HVC).To improve the rotational speed stability of HVCs in mixed lubrication and the running condition of the... Rotational speed stability is an important evaluation indicator of the performance of a hydro-viscous clutch(HVC).To improve the rotational speed stability of HVCs in mixed lubrication and the running condition of the friction pairs,the speed stability of an HVC in mixed lubrication was studied.To this end,the friction coefficients of both copper-based and paper-based friction pairs were experimentally tested using an MM1000-III wet friction machine.Theoretically,a torsional vibration model of the system is presented.The phase plane analysis method is applied to evaluate the stability of the torsional vibration model,where a critical negative gradient(CNG)is defined.The results show that the friction coefficient in mixed lubrication is an important parameter for the stability of the rotational speed.The system will be unstable when the negative gradient of the friction coefficient-slip speed is larger than the CNG.According to the definition of the CNG,suggestions regarding choice of friction pairs are made to improve the rotational speed stability of an HVC in mixed lubrication. 展开更多
关键词 Hydro-viscous clutch mixed lubrication speed stability negative gradient of friction coefficient-slipping speed torsional vibration model critical negative gradient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部