Lithium–sulfur batteries are one of the attractive next-generation energy storage systems owing to theienvironmental friendliness,low cost,and high specific energy densities.However,the low electrical conductivity of...Lithium–sulfur batteries are one of the attractive next-generation energy storage systems owing to theienvironmental friendliness,low cost,and high specific energy densities.However,the low electrical conductivity of sulfur,shuttling of soluble intermediate polysulfides between electrodes,and low capacitretention have hampered their commercial use.To address these issues,we use a halloysitemodulated(H-M)separator in a lithium–sulfur battery to mitigate the shuttling problem.The H-M separator acts as a mutual Coulombic repulsion in lithium-sulfur batteries,thereby selectively permitting Lions and efficiently suppressing the transfer of undesired lithium polysulfides to the Li anode sideMoreover,the use of halloysite switches the surface of the separator from hydrophobic to hydrophilicconsequently improving the electrolyte wettability and adhesion between the separator and cathodeWhen sulfur-multi-walled carbon nanotube(S-MWCNT)composites are used as cathode active materialsa lithium–sulfur battery with an H-M separator exhibits first discharge and charge capacities of 1587 an1527 m Ah g-1,respectively.Moreover,there is a consistent capacity retention up to 100 cyclesAccordingly,our approach demonstrates an economical and easily accessible strategy for commercialization of lithium–sulfur batteries.展开更多
Previous molecular analyses of human astrocytomas have identified many genetic changes associated with astrocy-toma formation and progression.In an effort to identify novel gene expression changes associated with astr...Previous molecular analyses of human astrocytomas have identified many genetic changes associated with astrocy-toma formation and progression.In an effort to identify novel gene expression changes associated with astrocytomaformation,which might reveal new potential targets for glioma therapeutic drug design,we used the B8-RAS-transgenic mouse astrocytoma model.Using multiplex gene expression profiling,we found that展开更多
A kind of mixed tensor product negative Bemstein-B6zier basis function is presented in this paper. Some important prop- erties of this kind of basis function are discussed and mixed tensor product negative Bemstein-B6...A kind of mixed tensor product negative Bemstein-B6zier basis function is presented in this paper. Some important prop- erties of this kind of basis function are discussed and mixed tensor product negative Bemstein-B6zier is defined based on it. The ba- sic properties of the such surface are discussed. Via de Casteljan algorithm, the evaluation algorithm and subdivision algorithm for mixed tensor product negative Bernstein-B6zier surfaces are derived as extensions of the algorithms of B6zier curves and negative Bernstein curves.展开更多
In this paper,we consider the Brownian motion risk model with interest.The Laplace transform of the first exit time from the upper barrier before hitting the lower barrier is obtained.Using the obtained result and exp...In this paper,we consider the Brownian motion risk model with interest.The Laplace transform of the first exit time from the upper barrier before hitting the lower barrier is obtained.Using the obtained result and exploiting the limitation idea,we derive the Laplace transform of total duration of negative surplus.展开更多
Deep soil organic carbon(SOC)plays an important role in carbon cycling.Precisely predicting deep SOC at the regional scale is crucial for the accurate assessment of carbon sequestration potential in soils but has been...Deep soil organic carbon(SOC)plays an important role in carbon cycling.Precisely predicting deep SOC at the regional scale is crucial for the accurate assessment of carbon sequestration potential in soils but has been challenging for a century.Herein,we developed a depth distribution function-based empirical approach to predict SOC in deep soils at the regional scale.We validated this approach with a dataset from four regions of the world and examined the application of this approach in China’s Loess Plateau.We found that among the reported depth distribution functions describing vertical patterns of SOC,the negative exponential function performed best in fitting SOC along the soil profile in various regions.Moreover,the parameters(i.e.,Ceand k)of the negative exponential function were linearly correlated to surface SOC(0–20 cm)and the changing rates of SOC within the topsoil(0–40 cm).Based on the above relationships,the empirical equations for predicting the negative exponential parameters are established.The validation results from site-specific and regional dataset showed that combining the negative exponential function and such empirical equations can precisely predict SOC concentration in soils down to 500 cm depth.Our study provides a simple,rapid and accurate method for predicting deep soil SOC at the regional scale,which could simplify the assessment of deep soil SOC in various regions.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2018R1C1B6004689)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2020R1I1A306182111)the Electronics and Telecommunications Research Institute(ETRI)grant funded by the Korean government(21ZB1200,Development of ICT Materials,Components and Equipment Technologies)。
文摘Lithium–sulfur batteries are one of the attractive next-generation energy storage systems owing to theienvironmental friendliness,low cost,and high specific energy densities.However,the low electrical conductivity of sulfur,shuttling of soluble intermediate polysulfides between electrodes,and low capacitretention have hampered their commercial use.To address these issues,we use a halloysitemodulated(H-M)separator in a lithium–sulfur battery to mitigate the shuttling problem.The H-M separator acts as a mutual Coulombic repulsion in lithium-sulfur batteries,thereby selectively permitting Lions and efficiently suppressing the transfer of undesired lithium polysulfides to the Li anode sideMoreover,the use of halloysite switches the surface of the separator from hydrophobic to hydrophilicconsequently improving the electrolyte wettability and adhesion between the separator and cathodeWhen sulfur-multi-walled carbon nanotube(S-MWCNT)composites are used as cathode active materialsa lithium–sulfur battery with an H-M separator exhibits first discharge and charge capacities of 1587 an1527 m Ah g-1,respectively.Moreover,there is a consistent capacity retention up to 100 cyclesAccordingly,our approach demonstrates an economical and easily accessible strategy for commercialization of lithium–sulfur batteries.
文摘Previous molecular analyses of human astrocytomas have identified many genetic changes associated with astrocy-toma formation and progression.In an effort to identify novel gene expression changes associated with astrocytomaformation,which might reveal new potential targets for glioma therapeutic drug design,we used the B8-RAS-transgenic mouse astrocytoma model.Using multiplex gene expression profiling,we found that
文摘A kind of mixed tensor product negative Bemstein-B6zier basis function is presented in this paper. Some important prop- erties of this kind of basis function are discussed and mixed tensor product negative Bemstein-B6zier is defined based on it. The ba- sic properties of the such surface are discussed. Via de Casteljan algorithm, the evaluation algorithm and subdivision algorithm for mixed tensor product negative Bernstein-B6zier surfaces are derived as extensions of the algorithms of B6zier curves and negative Bernstein curves.
基金Supported by National Natural Science Foundation of China(Grant Nos.11226204,10901086 and 11226203)the Doctoral Fund Program of Tianjin Normal University(Grant No.52XB1204)
文摘In this paper,we consider the Brownian motion risk model with interest.The Laplace transform of the first exit time from the upper barrier before hitting the lower barrier is obtained.Using the obtained result and exploiting the limitation idea,we derive the Laplace transform of total duration of negative surplus.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA23070202 and XDB40020000)the National Key Research and Development Program(Grant No.2022YFF1302804)+1 种基金the National Natural Science Foundation of China(Grant Nos.41977068 and 41622105)the Program from Chinese Academy of Sciences(Grant No.QYZDB-SSWDQC039)。
文摘Deep soil organic carbon(SOC)plays an important role in carbon cycling.Precisely predicting deep SOC at the regional scale is crucial for the accurate assessment of carbon sequestration potential in soils but has been challenging for a century.Herein,we developed a depth distribution function-based empirical approach to predict SOC in deep soils at the regional scale.We validated this approach with a dataset from four regions of the world and examined the application of this approach in China’s Loess Plateau.We found that among the reported depth distribution functions describing vertical patterns of SOC,the negative exponential function performed best in fitting SOC along the soil profile in various regions.Moreover,the parameters(i.e.,Ceand k)of the negative exponential function were linearly correlated to surface SOC(0–20 cm)and the changing rates of SOC within the topsoil(0–40 cm).Based on the above relationships,the empirical equations for predicting the negative exponential parameters are established.The validation results from site-specific and regional dataset showed that combining the negative exponential function and such empirical equations can precisely predict SOC concentration in soils down to 500 cm depth.Our study provides a simple,rapid and accurate method for predicting deep soil SOC at the regional scale,which could simplify the assessment of deep soil SOC in various regions.