Against globalization, national image has become important strategic resource and a clear understanding of China's image in western countries is greatly beneficial to China's development and rise. This paper through...Against globalization, national image has become important strategic resource and a clear understanding of China's image in western countries is greatly beneficial to China's development and rise. This paper through studying China's image in contemporary British and American academia and press probes into the negative image, analysing the background and reason of its formation to give inspiration for the construction of national image under globalization.展开更多
On the basis of a state-of-the-art aberration-corrected transmission electron microscope, the spherical aberration coefficient CSof the objective lens can be tuned to either a positive or a negative value. The use of ...On the basis of a state-of-the-art aberration-corrected transmission electron microscope, the spherical aberration coefficient CSof the objective lens can be tuned to either a positive or a negative value. The use of a negative value of CS combined with an overfocus setting of the objective lens leads to the development of the negative CSimaging(NCSI) technique. Images obtained using the NCSI technique show superior contrast and signal intensity at atomic column positions than the corresponding positive CSimages, especially for weakly scattering oxygen columns that are in close proximity to strongly scattering cation columns in oxides. Based on the images obtained under the NCSI condition, quantification of the image contrast allows measurements of the atom positions with a precision of a few picometers and the local chemistry on atomic scale. In the present review, we discuss firstly the benefits of the NCSI technique in studies of oxide materials,and then show a procedure for quantitative analysis of the image based on the absolute value of contrast. In the last part,examples are given for the application of the quantitative high-resolution transmission electron microscopy(HRTEM) to the study of electric dipoles of oxide ferroelectrics and atomic-scale chemistry of interfaces.展开更多
文摘Against globalization, national image has become important strategic resource and a clear understanding of China's image in western countries is greatly beneficial to China's development and rise. This paper through studying China's image in contemporary British and American academia and press probes into the negative image, analysing the background and reason of its formation to give inspiration for the construction of national image under globalization.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51390472 and 51471169)the National Basic Research Program of China(Grant No.2015CB654903)
文摘On the basis of a state-of-the-art aberration-corrected transmission electron microscope, the spherical aberration coefficient CSof the objective lens can be tuned to either a positive or a negative value. The use of a negative value of CS combined with an overfocus setting of the objective lens leads to the development of the negative CSimaging(NCSI) technique. Images obtained using the NCSI technique show superior contrast and signal intensity at atomic column positions than the corresponding positive CSimages, especially for weakly scattering oxygen columns that are in close proximity to strongly scattering cation columns in oxides. Based on the images obtained under the NCSI condition, quantification of the image contrast allows measurements of the atom positions with a precision of a few picometers and the local chemistry on atomic scale. In the present review, we discuss firstly the benefits of the NCSI technique in studies of oxide materials,and then show a procedure for quantitative analysis of the image based on the absolute value of contrast. In the last part,examples are given for the application of the quantitative high-resolution transmission electron microscopy(HRTEM) to the study of electric dipoles of oxide ferroelectrics and atomic-scale chemistry of interfaces.