A low-voltage, low-power, and high-gain rail-to-rail operational amplifier (OpAmp) is presented. The replica-amplifier gain enhancement technique is applied to improve the DC gain of the amplifier, which does not de...A low-voltage, low-power, and high-gain rail-to-rail operational amplifier (OpAmp) is presented. The replica-amplifier gain enhancement technique is applied to improve the DC gain of the amplifier, which does not degrade the output swing and is very suitable for low-voltage applications. In a 0. 18/μm standard CMOS process,a 1V OpAmp with rail-to-rail output is designed. For a load capacitance of 5 pF,simulation by HSPICE shows that this OpAmp achieves an effective open-loop DC gain of 65. 9dB,gain bandwidth of 70.28 MHz,and phase margin of 50 with a quiescent power dissipation of 156.7μW.展开更多
文摘A low-voltage, low-power, and high-gain rail-to-rail operational amplifier (OpAmp) is presented. The replica-amplifier gain enhancement technique is applied to improve the DC gain of the amplifier, which does not degrade the output swing and is very suitable for low-voltage applications. In a 0. 18/μm standard CMOS process,a 1V OpAmp with rail-to-rail output is designed. For a load capacitance of 5 pF,simulation by HSPICE shows that this OpAmp achieves an effective open-loop DC gain of 65. 9dB,gain bandwidth of 70.28 MHz,and phase margin of 50 with a quiescent power dissipation of 156.7μW.