We study potential operators and,more generally,Laplace-Stieltjes and Laplace type multipliers associated with the twisted Laplacian.We characterize those 1 ≤ p,q ≤ ∞,for which the potential operators are Lp—Lq bo...We study potential operators and,more generally,Laplace-Stieltjes and Laplace type multipliers associated with the twisted Laplacian.We characterize those 1 ≤ p,q ≤ ∞,for which the potential operators are Lp—Lq bounded.This result is a sharp analogue of the classical Hardy-Littlewood-Sobolev fractional integration theorem in the context of special Hermite expansions.We also investigate Lp mapping properties of the Laplace-Stieltjes and Laplace type multipliers.展开更多
基金supported by the National Science Centre of Poland within the project Opus 2013/09/B/ST1/02057
文摘We study potential operators and,more generally,Laplace-Stieltjes and Laplace type multipliers associated with the twisted Laplacian.We characterize those 1 ≤ p,q ≤ ∞,for which the potential operators are Lp—Lq bounded.This result is a sharp analogue of the classical Hardy-Littlewood-Sobolev fractional integration theorem in the context of special Hermite expansions.We also investigate Lp mapping properties of the Laplace-Stieltjes and Laplace type multipliers.