期刊文献+
共找到8,366篇文章
< 1 2 250 >
每页显示 20 50 100
Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
1
作者 Dong-Sheng Chen Ting-Ting Miao +3 位作者 Cheng Chang Xu-Yang Guo Meng-Yan Guan and Zhong-Li Ji 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期494-504,共11页
The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsid... The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsidence.In this study,we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations.The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain.Two phonon transport mechanisms were identified as factors enhancing thermal conductivity.At low compressive strains,a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules.At high compressive strains,the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels.Additionally,we found that a strain of0.04 is a watershed point,where methane hydrate transitions from stable to unstable.Furthermore,a strain of0.06 marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks.At a higher strain of0.08,the increased volume compression reduces the available space,limiting the diffusion ability of water and methane molecules within the hydrate.The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period.Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments. 展开更多
关键词 METHANE HYDRATE MOLECULAR dynamics thermal transport TRIAXIAL compression structural stability
下载PDF
Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials
2
作者 Yoon Bo Sim Hami Lee +1 位作者 Junyoung Mun Ki Jae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期185-205,共21页
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C... With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials. 展开更多
关键词 High energy density High-Ni cathode materials Degradation structural stability Lithium-ion battery
下载PDF
Enhancing Na^(+) diffusion dynamics and structural stability of O3-NaMn_(0.5)Ni_(0.5)O_(2)cathode by Sc and Zn dual-substitution
3
作者 Bin-bin WANG Yi-ming FENG +8 位作者 Xin LUO Qun HUANG Zi-xing HOU Ya-qin WU Peng-yu WANG Yu-yang QI Qing-fei MENG Wei-feng WEI Liang-jun ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3344-3357,共14页
Sc and Zn were introduced into O3-NaMn_(0.5)Ni_(0.5)O_(2)(NaMN)using the combination of solution combustion and solid-state method.The effect of Sc and Zn dual-substitution on Na^(+) diffusion dynamics and structural ... Sc and Zn were introduced into O3-NaMn_(0.5)Ni_(0.5)O_(2)(NaMN)using the combination of solution combustion and solid-state method.The effect of Sc and Zn dual-substitution on Na^(+) diffusion dynamics and structural stability of NaMN was investigated.The physicochemical characterizations suggest that the introduction of Sc and Zn broaden Na^(+) diffusion channels and weaken the Na—O bonds,thereby facilitating the diffusion of sodium ions.Simulations indicate that the Sc and Zn dual-substitution decreases the diffusion barrier of Na-ions and improves the conductivity of the material.The dual-substituted NaMn_(0.5)Ni_(0.4)Sc_(0.04)Zn_(0.04)O_(2)(Na MNSZ44)cathode delivers impressive cycle stability with capacity retention of 71.2%after 200 cycles at 1C and 54.8%after 400 cycles at 5C.Additionally,the full cell paired with hard carbon anode exhibits a remarkable long-term cycling stability,showing capacity retention of 64.1%after 250 cycles at 1C.These results demonstrate that Sc and Zn dual-substitution is an effective strategy to improve the Na^(+) diffusion dynamics and structural stability of NaMN. 展开更多
关键词 layered oxide cathode Sc and Zn dual-substitution structural stability Na^(+)diffusion dynamics
下载PDF
Structural and electrochemical stabilization enabling high-energy P3-type Cr-based layered oxide cathode for K-ion batteries
4
作者 Wonseok Ko Seokjin Lee +7 位作者 Hyunyoung Park Jungmin Kang Jinho Ahn Yongseok Lee Gwangeon Oh Jung-Keun Yoo Jang-Yeon Hwang Jongsoon Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期81-93,共13页
Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe ... Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe structural change by de/intercalation and diffusion of K^(+)ions with large ionic size,which results in not only much lower reversible capacity than the theoretical capacity but also poor power capability.Thus,it is important to enhance the structural stability of the layered-type TM oxides for outstanding electrochemical behaviors under the K-ion battery system.Herein,it is investigated that the substitution of the appropriate Ti^(4+)contents enables a highly enlarged reversible capacity of P3-type KxCrO_(2) using combined studies of first-principles calculation and various experiments.Whereas the pristine P3-type KxCrO_(2) just exhibits the reversible capacity of∼120 mAh g^(−1) in the voltage range of 1.5-4.0 V(vs.K^(+)/K),the∼0.61 mol K^(+)corresponding to∼150 mAh g^(−1) can be reversible de/intercalated at the structure of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) under the same conditions.Furthermore,even at the high current density of 788 mA g^(−1),the specific capacity of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) is∼120 mAh g^(−1),which is∼81 times larger than that of the pristine P3-type KxCrO_(2).It is believed that this research can provide an effective strategy to improve the electrochemical performances of the cathode materials suffered by severe structural change that occurred during charge/discharge under not only K-ion battery system but also other rechargeable battery systems. 展开更多
关键词 cathodes first-principles calculations layered-type oxide materials potassium-ion batteries structural stabilization
下载PDF
Efficient placement technology of proppants based on structural stabilizers
5
作者 GUO Jianchun REN Shan +3 位作者 ZHANG Shaobin DIAO Su LU Yang ZHANG Tao 《Petroleum Exploration and Development》 SCIE 2024年第3期706-714,共9页
Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is de... Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells. 展开更多
关键词 hydraulic fracturing PROPPANT structure stabilizer placement mechanism CONDUCTIVITY proppant backflow rate
下载PDF
Construction of core@double-shell structured energetic composites with simultaneously enhanced thermal stability and safety performance
6
作者 Peng Wang Wen Qian +6 位作者 Ruolei Zhong Fangfang He Xin Li Jie Chen Li Meng Yinshuang Sun Guansong He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期134-142,共9页
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat... The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials. 展开更多
关键词 CL-20 Double-shell structure Thermal stability Safety performance Tannic acid Graphene sheets
下载PDF
A Facile Li_(2)TiO_(3) Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides
7
作者 Naifang Hu Yuan Yang +5 位作者 Lin Li Yuhan Zhang Zhiwei Hu Lan Zhang Jun Ma Guanglei Cui 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期41-48,共8页
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat... Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries. 展开更多
关键词 full concentration gradient lithium-rich layered oxides structure stability surface modification
下载PDF
Integration of bio-inspired limb-like structure damping into motor suspension of high-speed trains to enhance bogie hunting stability
8
作者 Heng Zhang Liang Ling +1 位作者 Sebastian Stichel Wanming Zhai 《Railway Engineering Science》 EI 2024年第3期324-343,共20页
Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ... Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated. 展开更多
关键词 High-speed train Hunting stability Bio-inspired limb-like structure Motor suspension Nonlinear damping
下载PDF
Study on structural stability,elastic and electronic properties for β-Ti under pressure based on first principles
9
作者 张永梅 张乐婷 赵宇宏 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第2期162-167,共6页
The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti b... The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti becomes stabler, which is further con-firmed by the calculation for density of state (DOS). The phase transition pressure of is about 64. 3 GPa, which is consist-ent with other theoretical predictions (63. 7 GPa) and the experimental result (50 GPa). The pressure dependence of elastic constants shows that the low-pressure limit for a mechanically stable β-Ti is about 50 GPa with low Young?s modulus value of about 30. 01 GPa, which approaches the value of a human bone (30 GPa). In addition, the pressure dependence of bulk modu-lus B, shear modulus G, Young’s modulus E,Poisson’s ratio σ,aggregate sound velocities,and ductility/brittleness under different pressures were also discussed. B, G and E ascend monotonously with increasing pressure, while a descends. β-Ti re-mains ductile by analysis of B/G under considered pressures. 展开更多
关键词 FIRST-PRINCIPLES structural stability elastic property electronic structure TI
下载PDF
Flume experiments to study fine-grain migration and its impact on slope stability
10
作者 WANG Baoliang WANG Quanwei +2 位作者 LI Yong YAO Zhenguo WANG Hongfei 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3552-3566,共15页
Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characterist... Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability. 展开更多
关键词 Fine-grain migration Slope stability Pore-water pressure Artificial rainfall Soil structure Flume experiments
下载PDF
Direct observation of ordered-disordered structural transition of MoS_(2)-confined ionic liquids
11
作者 Yumiao Lu Weilu Ding +4 位作者 Kun Li Yanlei Wang Bobo Cao Ruirui He Hongyan He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期126-132,共7页
Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs... Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications. 展开更多
关键词 Ionic liquids(ILs) Surface-confined ILs structural transition Thermal stability Interfacial forces
下载PDF
Nonlinear constitutive models of rock structural plane and their applications
12
作者 Wenlin Feng Shuangjian Niu +1 位作者 Chunsheng Qiao Dujian Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期790-806,共17页
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ... Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering. 展开更多
关键词 structural plane Engineering stability ROUGHNESS Normal stress Elasto-plastic constitutive model Discrete element method
下载PDF
Physics-based and data-driven modeling for stability evaluation of buried structures in natural clays 被引量:1
13
作者 Fengwen Lai Jim Shiau +3 位作者 Suraparb Keawsawasvong Fuquan Chen Rungkhun Banyong Sorawit Seehavong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1248-1262,共15页
This study presents a hybrid framework to predict stability solutions of buried structures under active trapdoor conditions in natural clays with anisotropy and heterogeneity by combining physics-based and data-driven... This study presents a hybrid framework to predict stability solutions of buried structures under active trapdoor conditions in natural clays with anisotropy and heterogeneity by combining physics-based and data-driven modeling.Finite-element limit analysis(FELA)with a newly developed anisotropic undrained shear(AUS)failure criterion is used to identify the underlying active failure mechanisms as well as to develop a numerical(physics-based)database of stability numbers for both planar and circular trapdoors.Practical considerations are given for natural clays to three linearly increasing shear strengths in compression,extension,and direct simple shear in the AUS material model.The obtained numerical solutions are compared and validated with published solutions in the literature.A multivariate adaptive regression splines(MARS)algorithm is further utilized to learn the numerical solutions to act as fast FELA data-driven surrogates for stability evaluation.The current MARS-based modeling provides both relative importance index and accurate design equations that can be used with confidence by practitioners. 展开更多
关键词 Buried structures Natural clays Active trapdoor Undrained stability Multivariate adaptive regression splines (MARS) Finite element limit analysis(FELA)
下载PDF
Assessment of structural stability in Bohai Sea area based on AHP-GDM model 被引量:8
14
作者 XIU Zongxiang LIU Baohua +4 位作者 XIE Qiuhong LI Xishuang LIU Chenguang PEI Yanliang ZHENG Yanpeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第4期41-48,共8页
The AHP-GDM model is used for the assessment of structural stability, with the Bohai Sea area as an exam- ple. In this model, the credit degree of each expert is calculated through the assessment matrix based on the s... The AHP-GDM model is used for the assessment of structural stability, with the Bohai Sea area as an exam- ple. In this model, the credit degree of each expert is calculated through the assessment matrix based on the similarity and diversity of vector. The comprehensive opinions of expert panel are quantitatively obtained by considering the effect ofcredit degree. According to the geological structural setting, the Bohai Sea is di- vided into twelve assessment zones of structural stability by non-uniform element method. The structural stability grade of each zone is obtained on the basis of the latest geophysical data, earthquake statistical data, and the information of fault activities, current stress field and crustal deformation. The results show that there are one relatively stable area, three relatively sub-stable areas, six relatively sub-unstable areas and two relatively unstable areas. The assessment results of non-uniform element method are very close with those of uniform grid method with size of 0.25 in longitude direction and 0.14 in latitude direction. However the workload of non-uniform element method is only 1 / 16 of the latter. Compared with traditional assessment methods of structural stability, a more objective and reliable assessment result can be obtained by combining non-uniform element method and AHP-GDM model. 展开更多
关键词 AHP-GDM Mode Bohai Sea structural stability non-uniform element method
下载PDF
Structural stability of methane hydrate at high pressures 被引量:2
15
作者 I.-Ming Chou Russell J.Hemley Ho-kwang Mao 《Geoscience Frontiers》 SCIE CAS 2011年第1期93-100,共8页
The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamon... The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil ceils. The diffraction data for types II (slI) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sl methane hydrate transforms to the sll phase at 120 MPa, and then to the sH phase at 600 MPa. The slI methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure. 展开更多
关键词 Methane hydrate structural stability High pressure
下载PDF
EFFECTS OF Al CONTENT ON STRUCTURAL STABILITY AND MAGNETIC PROPERTIES OF Sm_2(Fe,Al)_(17) COMPOUNDS 被引量:1
16
作者 Xu, Rengen Wang, Xinhua +4 位作者 Wu, Jianmin Pan, Hongge Chen, Changpin Wang, Qidong Dai, Lichi 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期42-45,共4页
INTRODUCTIONItiswelknownthatSm2Fe17Nycompoundshavegoodintrinsicmagneticproperties[1].Becauseofthepoorstabi... INTRODUCTIONItiswelknownthatSm2Fe17Nycompoundshavegoodintrinsicmagneticproperties[1].BecauseofthepoorstabilityofSm2Fe17Nyat... 展开更多
关键词 SM 2Fe 17 AL HYDRIDE CURIE temperature structural stability
下载PDF
Exact Geometric Relationships, Symmetry Breaking and Structural Stability for Single-Walled Carbon Nanotubes 被引量:1
17
作者 Tong Zhang Ze Shuai Yuan Li Hao Tan 《Nano-Micro Letters》 SCIE EI CAS 2011年第4期228-235,共8页
We pioneered a study about how the geometric relationship of single-walled carbon nanotubes(SWCNT) is influenced by curvature factor and non-planar geometry factor in cylindrical coordinate system based on the assumpt... We pioneered a study about how the geometric relationship of single-walled carbon nanotubes(SWCNT) is influenced by curvature factor and non-planar geometry factor in cylindrical coordinate system based on the assumption of complete symmetry. The bond length and angle of every carbon-carbon bonds are determined by using the principle of the minimum energy. The results of the paper include(1) From the calculation result, the symmetry breaking appears for chiral carbon nanotubes, while the part symmetry appears for achiral carbon nanotubes with increasing curvature.(2) The synergistic effect of bond lengths and bond angles is first found.(3) We conclude that the influence of non-planar geometry factor can be completely ignored on bond lengths and bond angles when the curvature parameter has been included in the model.(4)The two fractal dimensions are given from the nanoscale to the macroscale for zigzag topology and armchair topology respectively. Fractal dimensions of SWCNT show special characteristics, varying with the length of SWCNT until the lengths approach infinity. The close and inevitable correlations among curvature, symmetry breaking and stability of SWCNTs can be summed up as: the increase of curvature causes symmetry breaking,and such symmetry breaking will further reduce the structural stability. 展开更多
关键词 GEOMETRY structural stability Symmetry Breaking Fractal Dimension
下载PDF
First-principles study of structural stability and elastic properties of MgPd_(3) and its hydride 被引量:2
18
作者 Dong-Hai Wu Hai-Chen Wang +2 位作者 Liu-Ting Wei Rong-Kai Pan Bi-Yu Tang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第2期165-174,共10页
Theoretical study of structural stability and elastic properties ofα-andβ-MgPd_(3)intermetallic compounds as well as their hydrides have been carried out based on density functional theory.The results indicateα-MgP... Theoretical study of structural stability and elastic properties ofα-andβ-MgPd_(3)intermetallic compounds as well as their hydrides have been carried out based on density functional theory.The results indicateα-MgPd_(3)is more stable thanβphase with increased stability in their hydrides.The calculated elastic constants ofα-MgPd_(3)are overall larger thanβphase.After hydrogenation,the elastic constants are enlarged.And the elastic moduli exhibit similar tendency.The anisotropy ofα-MgPd_(3)is larger thanβphase,and the hydrides demonstrate larger anisotropy.Their ductility follows the order ofα-MgPd_(3)H_(0.5)<α-MgPd_(3)<β-MgPd_(3)H<β-MgPd_(3).Compared withβphase,higher Debye temperature ofα-MgPd_(3)implies stronger covalent interaction,and the Debye temperature of hydrides increases slightly.The electronic structures demonstrate that the Pd-Pd interaction is stronger than Pd-Mg,and Pd-H bonds play a significant role in the phase stability and elastic properties of hydrides. 展开更多
关键词 FIRST-PRINCIPLES stability Elastic properties Electronic structure MgPd_(3)
下载PDF
Structural Evolution of Graphene Oxide and Its Thermal Stability During High Temperature Sintering 被引量:1
19
作者 HU Lanxin WANG Aiyang WANG Weimin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期342-349,共8页
The thermal reduction of graphene oxide(GO)was performed by a tube furnace at different temperatures,and its structure evolution was investigated in detail.The results showed that the oxygen-containing functional grou... The thermal reduction of graphene oxide(GO)was performed by a tube furnace at different temperatures,and its structure evolution was investigated in detail.The results showed that the oxygen-containing functional groups on the carbon plane surface of GO gradually decomposed as the temperature increase,and the reduced graphene oxide(rGO)powder was obtained at 800℃.Then,rGO powder was sintered under 30 MPa at 1800℃using spark plasma sintering(SPS)and hot-pressing(HP)to evaluate its structural stability at high temperatures.The defect densities of rGO were reduced after high-temperature sintering.The edge flatness and sp^(2) hybrid carbon plane structure were reconstructed effectively.These results demonstrate that the lamellar structure of rGO maintains the structural integrity during high-temperature sintering without obvious deterioration,which provides experimental and theoretical supports for GO reinforced ceramics. 展开更多
关键词 graphene oxide CERAMICS structure evolution thermal stability SINTERING
下载PDF
A Study of the Structural Properties and Thermal Stability of Chitosanases EAG1 by Molecular Dynamics Simulations 被引量:1
20
作者 Yueming Li Jianchun Xu Zhimei Xu 《Journal of Biomedical Science and Engineering》 2018年第11期320-326,共7页
Chitosanases EAG1, a classical glycoside hydrolase from Bacillus ehimensis, is relatively unstable with higher temperature. This shortcoming seriously restricts its industrial application. Therefore, it is crucial to ... Chitosanases EAG1, a classical glycoside hydrolase from Bacillus ehimensis, is relatively unstable with higher temperature. This shortcoming seriously restricts its industrial application. Therefore, it is crucial to clarify the theoretical basis of thermo stability and to produce enzymes with high activity and stability. Using the structural modeling and molecular dynamical simulation, residues Leu84, Gly113, Asp116, Ala207 and Leu286 were believed to be the key residues for structural stability. Then the predicted residue Leu84 was mutated to ALA. It was shown that the L84A mutation can improve the thermal stability of chitosanases EAG1. Together with previous studies, mutations of G113C, D116C, A207C and L286C forms two sulfur bonds can change the thermal stability of EAG1. The results suggest that the thermal stability of EAG1 could be engineered by site-directed mutagenesis on the conserved residues. This protocol could be employed for improving thermal stability of other chitosanases EAG1. 展开更多
关键词 Chitosanases EAG1 THERMAL stability structural MODELING Moleculrar DYNAMICAL Simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部