Forest structure analysis is important for understanding the properties and development of a forest community,and its outcomes can be influenced by how trees are measured in sampled plots.Although there is a general c...Forest structure analysis is important for understanding the properties and development of a forest community,and its outcomes can be influenced by how trees are measured in sampled plots.Although there is a general consensus on the height at which tree diameter should be measured[1.3 m:diameter at breast height(DBH)],the minimum measureddiameter(MMD)often varies in different studies.In this study,we assumed that the outcomes of forest structure analysis can be influenced by MMD and,to this end,we applied g(r)function and stand spatial structural parameters(SSSPs)to investigate how different MMDs affect forest spatial structure analysis in two pine-oak mixed forests(30 and 57 years old)in southwest China and one old-growth oak forest(>120years old)from northwest China.Our results showed that 1)MMD was closely related to the distribution patterns of forest trees.Tree distribution patterns at each observational scale(r=0-20 m)tended tobecome random as the MMD increased.The older the community,the earlier this random distribution pattern appeared.2)As the MMD increased,neighboring trees became more regularly distributed around a reference tree.In most cases,however,nearest neighbors of a reference tree were randomly distributed.3)Tree species mingling decreased with increasing diameter,but it decreased slowly in older forests.4)No correlations can be found between individual tree size differentiation and MMD.We recommend that comparisons of spatial structures between communities would be more effective if using a unified MMD criterion.展开更多
为解决运动想象脑电(electroencephalogram, EEG)信号多分类传输速率慢、准确率低的问题,本研究利用“一对多”滤波组共空间模式(one vs rest filter bank common spatial pattern, OVR-FBCSP)和稀疏嵌入(sparse embeddings, SE)提出了...为解决运动想象脑电(electroencephalogram, EEG)信号多分类传输速率慢、准确率低的问题,本研究利用“一对多”滤波组共空间模式(one vs rest filter bank common spatial pattern, OVR-FBCSP)和稀疏嵌入(sparse embeddings, SE)提出了一种基于SE的多分类EEG信号分类方法。为降低多类任务特征提取的复杂度,提高分类效率,本方法首先采用OVR-FBCSP进行EEG信号特征提取;然后对其相应的标签矩阵进行低维嵌入,构建稀疏嵌入模型,分别计算训练和测试数据的嵌入矩阵;最后在嵌入空间中对训练和测试数据执行k最近邻(k-nearest neighbor, kNN)分类。本研究在BCI Competition IV-2a公开数据集进行了实验测试,并与其他分类方法进行了对比。实验结果表明,本研究方法拥有较高的分类准确率和较短的分析时间。展开更多
The effect of the different training samples is different for the classifier when pattern recognition system is established. The training samples were selected randomly in the past protein disulfide bond prediction me...The effect of the different training samples is different for the classifier when pattern recognition system is established. The training samples were selected randomly in the past protein disulfide bond prediction methods, therefore the prediction accuracy of protein contact was reduced. In order to improve the influence of training samples, a prediction method of protein disulfide bond on the basis of pattern selection and Radical Basis Function neural network has been brought forward in this paper. The attributes related with protein disulfide bond are extracted and coded in the method and pattern selection is used to select training samples from coded samples in order to improve the precision of protein disulfide bond prediction. 200 proteins with disulfide bond structure from the PDB database are encoded according to the encoding approach and are taken as models of training samples. Then samples are taken on the pattern selection based on the nearest neighbor algorithm and corresponding prediction models are set by using RBF neural network. The simulation experiment result indicates that this method of pattern selection can improve the prediction accuracy of protein disulfide bond.展开更多
时间序列作为数据的典型代表,被广泛应用于许多研究领域.时间序列异常模式代表了一种特殊情况的出现,在许多领域都具有重要意义.现有的时间序列异常模式识别算法大多只是单纯检测异常子序列,忽略了异常子序列的类别区分问题,且许多参数...时间序列作为数据的典型代表,被广泛应用于许多研究领域.时间序列异常模式代表了一种特殊情况的出现,在许多领域都具有重要意义.现有的时间序列异常模式识别算法大多只是单纯检测异常子序列,忽略了异常子序列的类别区分问题,且许多参数都需要人为设置.为此提出了一种基于自适应k近邻的异常模式识别算法(anomaly pattern recognitionalgorithm based on adaptive k nearest neighbor,APAKN).首先,确定各子序列的自适应k近邻值,引入自适应距离比计算子序列的相对密度,确定异常分数;然后提出一种基于最小方差的自适应阈值方法确定异常阈值,检测出所有异常子序列;最后,对异常子序列进行聚类,所得聚类中心即为具有不同变化趋势的异常模式.整个算法过程在无需设置任何参数的情况下,不仅解决了密度不平衡问题,还精简了传统基于密度异常子序列检测算法的步骤,实现良好的异常模式识别效果.在时间序列数据集合UCR的10个数据集上的实验结果表明,提出算法在无需设置参数的情况下,在异常子序列检测和异常子序列聚类问题中都表现良好.展开更多
Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach...Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach of personal authentication using texture based Finger Knuckle Print (FKP) recognition in multiresolution domain. FKP images are rich in texture patterns. Recently, many texture patterns are proposed for biometric feature extraction. Hence, it is essential to review whether Local Binary Patterns or its variants perform well for FKP recognition. In this paper, Local Directional Pattern (LDP), Local Derivative Ternary Pattern (LDTP) and Local Texture Description Framework based Modified Local Directional Pattern (LTDF_MLDN) based feature extraction in multiresolution domain are experimented with Nearest Neighbor and Extreme Learning Machine (ELM) Classifier for FKP recognition. Experiments were conducted on PolYU database. The result shows that LDTP in Contourlet domain achieves a promising performance. It also proves that Soft classifier performs better than the hard classifier.展开更多
基金financially supported by the National Science Foundation of China (grant no. 31400542 31460196)+1 种基金Guangxi Natural Science Foundation (grant 2016GXNSFBA380233)Guangxi special fund project for innovation-driven development (AA 17204087-8)
文摘Forest structure analysis is important for understanding the properties and development of a forest community,and its outcomes can be influenced by how trees are measured in sampled plots.Although there is a general consensus on the height at which tree diameter should be measured[1.3 m:diameter at breast height(DBH)],the minimum measureddiameter(MMD)often varies in different studies.In this study,we assumed that the outcomes of forest structure analysis can be influenced by MMD and,to this end,we applied g(r)function and stand spatial structural parameters(SSSPs)to investigate how different MMDs affect forest spatial structure analysis in two pine-oak mixed forests(30 and 57 years old)in southwest China and one old-growth oak forest(>120years old)from northwest China.Our results showed that 1)MMD was closely related to the distribution patterns of forest trees.Tree distribution patterns at each observational scale(r=0-20 m)tended tobecome random as the MMD increased.The older the community,the earlier this random distribution pattern appeared.2)As the MMD increased,neighboring trees became more regularly distributed around a reference tree.In most cases,however,nearest neighbors of a reference tree were randomly distributed.3)Tree species mingling decreased with increasing diameter,but it decreased slowly in older forests.4)No correlations can be found between individual tree size differentiation and MMD.We recommend that comparisons of spatial structures between communities would be more effective if using a unified MMD criterion.
文摘The effect of the different training samples is different for the classifier when pattern recognition system is established. The training samples were selected randomly in the past protein disulfide bond prediction methods, therefore the prediction accuracy of protein contact was reduced. In order to improve the influence of training samples, a prediction method of protein disulfide bond on the basis of pattern selection and Radical Basis Function neural network has been brought forward in this paper. The attributes related with protein disulfide bond are extracted and coded in the method and pattern selection is used to select training samples from coded samples in order to improve the precision of protein disulfide bond prediction. 200 proteins with disulfide bond structure from the PDB database are encoded according to the encoding approach and are taken as models of training samples. Then samples are taken on the pattern selection based on the nearest neighbor algorithm and corresponding prediction models are set by using RBF neural network. The simulation experiment result indicates that this method of pattern selection can improve the prediction accuracy of protein disulfide bond.
文摘时间序列作为数据的典型代表,被广泛应用于许多研究领域.时间序列异常模式代表了一种特殊情况的出现,在许多领域都具有重要意义.现有的时间序列异常模式识别算法大多只是单纯检测异常子序列,忽略了异常子序列的类别区分问题,且许多参数都需要人为设置.为此提出了一种基于自适应k近邻的异常模式识别算法(anomaly pattern recognitionalgorithm based on adaptive k nearest neighbor,APAKN).首先,确定各子序列的自适应k近邻值,引入自适应距离比计算子序列的相对密度,确定异常分数;然后提出一种基于最小方差的自适应阈值方法确定异常阈值,检测出所有异常子序列;最后,对异常子序列进行聚类,所得聚类中心即为具有不同变化趋势的异常模式.整个算法过程在无需设置任何参数的情况下,不仅解决了密度不平衡问题,还精简了传统基于密度异常子序列检测算法的步骤,实现良好的异常模式识别效果.在时间序列数据集合UCR的10个数据集上的实验结果表明,提出算法在无需设置参数的情况下,在异常子序列检测和异常子序列聚类问题中都表现良好.
文摘Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach of personal authentication using texture based Finger Knuckle Print (FKP) recognition in multiresolution domain. FKP images are rich in texture patterns. Recently, many texture patterns are proposed for biometric feature extraction. Hence, it is essential to review whether Local Binary Patterns or its variants perform well for FKP recognition. In this paper, Local Directional Pattern (LDP), Local Derivative Ternary Pattern (LDTP) and Local Texture Description Framework based Modified Local Directional Pattern (LTDF_MLDN) based feature extraction in multiresolution domain are experimented with Nearest Neighbor and Extreme Learning Machine (ELM) Classifier for FKP recognition. Experiments were conducted on PolYU database. The result shows that LDTP in Contourlet domain achieves a promising performance. It also proves that Soft classifier performs better than the hard classifier.