分析现有反k近邻(reverse k nearest neighbor,RkNN)查询在效率、数据维度等方面的不足,提出基于R树结点覆盖值(R-tree’s cover-value)的RC-反k近邻查询方法.该方法需预先计算R树每个结点的覆盖值,采用过滤-精炼两步式处理方法,在过滤...分析现有反k近邻(reverse k nearest neighbor,RkNN)查询在效率、数据维度等方面的不足,提出基于R树结点覆盖值(R-tree’s cover-value)的RC-反k近邻查询方法.该方法需预先计算R树每个结点的覆盖值,采用过滤-精炼两步式处理方法,在过滤阶段采用两种剪枝启发式.该方法可有效处理数据库更新,适用于任意k值、任意维的对象集,查询结果精确,且计算量较小.实验结果表明,在k>6时RC-反k近邻查询时间比同类工作更短.展开更多
文摘分析现有反k近邻(reverse k nearest neighbor,RkNN)查询在效率、数据维度等方面的不足,提出基于R树结点覆盖值(R-tree’s cover-value)的RC-反k近邻查询方法.该方法需预先计算R树每个结点的覆盖值,采用过滤-精炼两步式处理方法,在过滤阶段采用两种剪枝启发式.该方法可有效处理数据库更新,适用于任意k值、任意维的对象集,查询结果精确,且计算量较小.实验结果表明,在k>6时RC-反k近邻查询时间比同类工作更短.