Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopan...Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.展开更多
Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of thi...Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.展开更多
Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain...Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain. Dielectric relaxation study and electro-optical measurements are carried out with the classical SSFLC geometry. The field-induced phase transitions are studied and the(E,T) phase diagram is established.展开更多
Nanoparticles (NPs) with flower-like and frame morphologies were synthesized from CuS, a remarkable transition-metal sulfide. We introduced two kinds of CuS NPs into a nematic liquid crystal (LC) 4-cyano-4'-n-pen...Nanoparticles (NPs) with flower-like and frame morphologies were synthesized from CuS, a remarkable transition-metal sulfide. We introduced two kinds of CuS NPs into a nematic liquid crystal (LC) 4-cyano-4'-n-pentylbiphenyl (5CB) and investigated the morphology- and concentration-dependent alignment and electro-optic (E-O) effects of CuS NPs on 5CB. A trace amount of flower-like CuS NPs induced a uniform homeotropic orientation of LC molecules; this is attributable to the obtained desirable compact nanosheet structure. Moreover, both flower-like and frame CuS NPs induced a remarkable improvement in the E-O properties of 5CB, and the flower-like CuS/5CB system exhibited a better performance. The doped CuS NPs in the LC host suppressed the shielding effect and strengthened the electric field, resulting in outstanding E-O properties. At a doping concentration of 0.05 wt.%, CuS NPs were well-dispersed and achieved the optimum E-O performance. This study provides a novel method for inducing a uniform orientation and enhanced E-O properties of LC molecules by doping with extraordinary CuS NPs, leading to potential applications in establishing flexible LC displays.展开更多
Excellent electro-optical (E-O) performances are essential for high-quality reflective cholesteric liquid crystal (LC) displays, but are often limited by the high driving voltages required by these displays. Dispe...Excellent electro-optical (E-O) performances are essential for high-quality reflective cholesteric liquid crystal (LC) displays, but are often limited by the high driving voltages required by these displays. Dispersing functional nanomaterials into the LCs has emerged as a promising approach to achieve outstanding E-O properties. In this work, we report the facet-controlled E-O properties of a chiral nematic LC (N*LC) doped with cubic, octahedral, and rhornbic dodecahedral Cu20. The outstanding E-O properties of the doped systems are related to the interaction between the liquid crystals and Cu20 dopants with different exposed crystal planes. Doping with octahedral and rhombic dodecahedral Cu20 reduces the stability of the planar state, as a result of both the surface abundance of active Cu atoms that interact with the polarized LC molecules, and the large amounts of vertexes and edges on the crystal surfaces, which accelerate the transition from the planar to the focal conic state under an applied electric field. Rhombic Cu20 is the most effective dopant for improving the E-O properties of the present LCs, resulting in a 65.31% reduction of the threshold voltage. The facet and morphology effects highlighted in this work provide a new pathway to develop excellent energy-saving meso-materials with exposed high-reactivity facets, improving their potential applications in electro-optical technologies and information displays.展开更多
The effects of the morphologies of liquid crystal (LC) droplets left in polymer network on the performance of polymer dispersed liquid crystal composite films were investigated.By adjusting the relative content range ...The effects of the morphologies of liquid crystal (LC) droplets left in polymer network on the performance of polymer dispersed liquid crystal composite films were investigated.By adjusting the relative content range of the crosslinking and diluents,the morphologies of polymer network can be changed.Therefore,the properties of PDLC composite films with imparity polymer morphologies were obtained by experiments and the finite element simulation.Results of the experimental and finite element simulation showed that the electro-optical properties of PDLC composite films were inversely proportional to the domain size of the polymer network and the mechanical properties were proportional to the domain size of the polymer network.展开更多
2-Hydroxyethyl methacrylate (HEMA) and styrene copolymers are prepared by photopolymerization. The electrooptical behavior and microstructure of the polymer dispersed liquid crystal films are investigated by using He-...2-Hydroxyethyl methacrylate (HEMA) and styrene copolymers are prepared by photopolymerization. The electrooptical behavior and microstructure of the polymer dispersed liquid crystal films are investigated by using He-Ne laser and scanning electron microscopy, respectively. With increasing E7 content in the copolymer, droplet size increased, threshold voltage decreased.展开更多
In order to explore the stability of a liquid crystal(LC)system doped withγ-Fe_(2)O_(3)nanoparticles,the physical properties(clearing point,dielectric properties),electro-optical properties and residual direct-curren...In order to explore the stability of a liquid crystal(LC)system doped withγ-Fe_(2)O_(3)nanoparticles,the physical properties(clearing point,dielectric properties),electro-optical properties and residual direct-current voltage(RDCV)of the doped LC system were measured and evaluated at different times.First,the temperature was controlled by precision hot stage,and the clearing point temperature of doped LC was observed and measured by a polarized optical microscope.Using a precision LCR meter,we measured the capacitance-voltage curves of the doped LC system at the temperature of 27℃.The dielectric constant of doped LC was calculated by the dualcell capacitance method.Then,the electro-optical properties of the doped LC system were measured.Finally,the RDCV of the doped LC system was measured and calculated.After five months,the parameters of the doped LC system were re-measured and analyzed under the same conditions to evaluate its stability.The experimental results show that,within five months,the clearing point change rate of doped LC is in the range of 0.24%-1.37%,the change of dielectric anisotropy is in the range of 0.035-0.2,the curves of electro-optical properties are basically fitted,and the change rate of saturated RDCV is about 11.2%,which basically indicate that the LC system doped withγ-Fe_(2)O_(3)nanoparticles has good stability.展开更多
A homologous series of Schiff base esters, 6-methoxy-2-(2-hydroxy-4-alkanoyloxybenzylidenamino)benzothiazoles, compris- ing a benzothiazole moiety as the core was synthesized. All the members of this series exhibite...A homologous series of Schiff base esters, 6-methoxy-2-(2-hydroxy-4-alkanoyloxybenzylidenamino)benzothiazoles, compris- ing a benzothiazole moiety as the core was synthesized. All the members of this series exhibited an enantiotropic nematic phase. The azomethine linkage along with the lateral hydroxyl and terminal methoxyl groups were found to exert an effect on the mesomorphic properties. 2009 Sie Tiong Ha. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
A polymer dispersed liquid crystal (PDLC) film that has good electro-optical properties is produced by the method of polymerized-induced phase separation. Based on the application foreground, its capability parameters...A polymer dispersed liquid crystal (PDLC) film that has good electro-optical properties is produced by the method of polymerized-induced phase separation. Based on the application foreground, its capability parameters, such as contrast ratio, work voltage, and visual angle, are characterized for the first time by a white light but not a fixed wavelength light. The results show the PDLC film has a low work-voltage of 20 V, more than 150° visual angle, high stability, and long lifetime. The differences between plastic and glass ITO-coated substrates of PDLC films are also studied in this paper. The plastic substrate has better property and will have a wider perspective especially in the portable, tender and folded display devices. Due to adjustable properties of film by electric field, PDLC has the potential application for display device, sensor, switch, grating, and new generation analytical apparatus.展开更多
The approaches to obtaining desired intensity or phase modulation by twisted-nematic liquid crystal display (TN-LCD) have been extensively studied based on the knowledge of the LCD's internal structure parameters. ...The approaches to obtaining desired intensity or phase modulation by twisted-nematic liquid crystal display (TN-LCD) have been extensively studied based on the knowledge of the LCD's internal structure parameters. Generally, the TN-LCD placed between two linear polarizers (P) produces coupled intensity and phase modulation. To obtain the commonly used phase-only modulation, quarter wave plates (QWPs) are often used in front of and/or behind the LCD. Here we present a method to optimize the optical modulation properties of the TN-LCD to obtain phase-only modulation in the configuration of P-QWP-LCD-QWP-P each with proper orientation. Our method is based on the macroscopical Jones matrix descriptions for the LCD, the QWPs, and the linear polarizers. Through Jones matrix calculations, the orientations of the polarizers and QWPs can be optimized to satisfy differently desired modulation demands. In contrast to the traditional method, which requires knowledge of the LCD's internal structure parameters, our method simplified the complicated theory analysis and can work in the absence of information on the LCD's internal structure parameters, which are usually not available for the commercial products.展开更多
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos. 60736042, 60578035 and 50703039) and the Science Foundation of Jilin Province of China (Grant Nos. 20050520 and 20050321-2).
文摘Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378075,61377032,11604327,and 61475152)the Science Foundation of State Key Laboratory of Applied Optics,China
文摘Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.
文摘Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain. Dielectric relaxation study and electro-optical measurements are carried out with the classical SSFLC geometry. The field-induced phase transitions are studied and the(E,T) phase diagram is established.
文摘Nanoparticles (NPs) with flower-like and frame morphologies were synthesized from CuS, a remarkable transition-metal sulfide. We introduced two kinds of CuS NPs into a nematic liquid crystal (LC) 4-cyano-4'-n-pentylbiphenyl (5CB) and investigated the morphology- and concentration-dependent alignment and electro-optic (E-O) effects of CuS NPs on 5CB. A trace amount of flower-like CuS NPs induced a uniform homeotropic orientation of LC molecules; this is attributable to the obtained desirable compact nanosheet structure. Moreover, both flower-like and frame CuS NPs induced a remarkable improvement in the E-O properties of 5CB, and the flower-like CuS/5CB system exhibited a better performance. The doped CuS NPs in the LC host suppressed the shielding effect and strengthened the electric field, resulting in outstanding E-O properties. At a doping concentration of 0.05 wt.%, CuS NPs were well-dispersed and achieved the optimum E-O performance. This study provides a novel method for inducing a uniform orientation and enhanced E-O properties of LC molecules by doping with extraordinary CuS NPs, leading to potential applications in establishing flexible LC displays.
文摘Excellent electro-optical (E-O) performances are essential for high-quality reflective cholesteric liquid crystal (LC) displays, but are often limited by the high driving voltages required by these displays. Dispersing functional nanomaterials into the LCs has emerged as a promising approach to achieve outstanding E-O properties. In this work, we report the facet-controlled E-O properties of a chiral nematic LC (N*LC) doped with cubic, octahedral, and rhornbic dodecahedral Cu20. The outstanding E-O properties of the doped systems are related to the interaction between the liquid crystals and Cu20 dopants with different exposed crystal planes. Doping with octahedral and rhombic dodecahedral Cu20 reduces the stability of the planar state, as a result of both the surface abundance of active Cu atoms that interact with the polarized LC molecules, and the large amounts of vertexes and edges on the crystal surfaces, which accelerate the transition from the planar to the focal conic state under an applied electric field. Rhombic Cu20 is the most effective dopant for improving the E-O properties of the present LCs, resulting in a 65.31% reduction of the threshold voltage. The facet and morphology effects highlighted in this work provide a new pathway to develop excellent energy-saving meso-materials with exposed high-reactivity facets, improving their potential applications in electro-optical technologies and information displays.
文摘The effects of the morphologies of liquid crystal (LC) droplets left in polymer network on the performance of polymer dispersed liquid crystal composite films were investigated.By adjusting the relative content range of the crosslinking and diluents,the morphologies of polymer network can be changed.Therefore,the properties of PDLC composite films with imparity polymer morphologies were obtained by experiments and the finite element simulation.Results of the experimental and finite element simulation showed that the electro-optical properties of PDLC composite films were inversely proportional to the domain size of the polymer network and the mechanical properties were proportional to the domain size of the polymer network.
文摘2-Hydroxyethyl methacrylate (HEMA) and styrene copolymers are prepared by photopolymerization. The electrooptical behavior and microstructure of the polymer dispersed liquid crystal films are investigated by using He-Ne laser and scanning electron microscopy, respectively. With increasing E7 content in the copolymer, droplet size increased, threshold voltage decreased.
基金Project supported by the Natural Science Foundation of Hebei Province of China (Grant Nos. A2019202235 and A2017202004)Research and Practice Project of Hebei Provincial Higher Education and Teaching Reform (Grant No. 2017GJJG018)+2 种基金Research Projects of Undergraduate Education and Teaching Reform in Hebei University of Technology (Grant No. 201802003)the Key Subject Construction Project of Hebei Provincial Universitiesthe Special Project of China Association of Higher Education (Grant No. 21LKYB05)
文摘In order to explore the stability of a liquid crystal(LC)system doped withγ-Fe_(2)O_(3)nanoparticles,the physical properties(clearing point,dielectric properties),electro-optical properties and residual direct-current voltage(RDCV)of the doped LC system were measured and evaluated at different times.First,the temperature was controlled by precision hot stage,and the clearing point temperature of doped LC was observed and measured by a polarized optical microscope.Using a precision LCR meter,we measured the capacitance-voltage curves of the doped LC system at the temperature of 27℃.The dielectric constant of doped LC was calculated by the dualcell capacitance method.Then,the electro-optical properties of the doped LC system were measured.Finally,the RDCV of the doped LC system was measured and calculated.After five months,the parameters of the doped LC system were re-measured and analyzed under the same conditions to evaluate its stability.The experimental results show that,within five months,the clearing point change rate of doped LC is in the range of 0.24%-1.37%,the change of dielectric anisotropy is in the range of 0.035-0.2,the curves of electro-optical properties are basically fitted,and the change rate of saturated RDCV is about 11.2%,which basically indicate that the LC system doped withγ-Fe_(2)O_(3)nanoparticles has good stability.
基金Universiti Tunku Abdul Rahman(UTAR)for the research facilities andfinancial support(No.6202/K06)the Malaysian Toray Science Foundation(No.4359/000)
文摘A homologous series of Schiff base esters, 6-methoxy-2-(2-hydroxy-4-alkanoyloxybenzylidenamino)benzothiazoles, compris- ing a benzothiazole moiety as the core was synthesized. All the members of this series exhibited an enantiotropic nematic phase. The azomethine linkage along with the lateral hydroxyl and terminal methoxyl groups were found to exert an effect on the mesomorphic properties. 2009 Sie Tiong Ha. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金Supported by the National Natural Science Foundation of China (Grant No. 20575021)
文摘A polymer dispersed liquid crystal (PDLC) film that has good electro-optical properties is produced by the method of polymerized-induced phase separation. Based on the application foreground, its capability parameters, such as contrast ratio, work voltage, and visual angle, are characterized for the first time by a white light but not a fixed wavelength light. The results show the PDLC film has a low work-voltage of 20 V, more than 150° visual angle, high stability, and long lifetime. The differences between plastic and glass ITO-coated substrates of PDLC films are also studied in this paper. The plastic substrate has better property and will have a wider perspective especially in the portable, tender and folded display devices. Due to adjustable properties of film by electric field, PDLC has the potential application for display device, sensor, switch, grating, and new generation analytical apparatus.
基金supported by the National Natural Science Foundation of China (Nos. 10874240 and 60678023)the Shanxi Province 13115 Science and Technology Innovative Project (No. 2008ZDKG-68)
文摘The approaches to obtaining desired intensity or phase modulation by twisted-nematic liquid crystal display (TN-LCD) have been extensively studied based on the knowledge of the LCD's internal structure parameters. Generally, the TN-LCD placed between two linear polarizers (P) produces coupled intensity and phase modulation. To obtain the commonly used phase-only modulation, quarter wave plates (QWPs) are often used in front of and/or behind the LCD. Here we present a method to optimize the optical modulation properties of the TN-LCD to obtain phase-only modulation in the configuration of P-QWP-LCD-QWP-P each with proper orientation. Our method is based on the macroscopical Jones matrix descriptions for the LCD, the QWPs, and the linear polarizers. Through Jones matrix calculations, the orientations of the polarizers and QWPs can be optimized to satisfy differently desired modulation demands. In contrast to the traditional method, which requires knowledge of the LCD's internal structure parameters, our method simplified the complicated theory analysis and can work in the absence of information on the LCD's internal structure parameters, which are usually not available for the commercial products.
基金supported by the National Natural Science Foundation of China(51203005)Specialized Research Fund for the Doctoral Program of Higher Education of China(20121102120045)~~