As an important building block for the synthesis of angiotensin-converting enzyme inhibitors,ethyl(R)-2-hy-droxyl-4-phenylbutanoate[(R)-HPBE]has attracted increasing attention.The key to industrial biosynthesis of(R)-...As an important building block for the synthesis of angiotensin-converting enzyme inhibitors,ethyl(R)-2-hy-droxyl-4-phenylbutanoate[(R)-HPBE]has attracted increasing attention.The key to industrial biosynthesis of(R)-HPBE is a biocatalyst that efficiently reduces ethyl 2-oxo-4-phenylbutanoate(OPBE)with high R-enantiose-lectivity.This paper proposed a strategy for identifying key residues involved in enantioselectivity control based on per-residue free energy decomposition and sequence conservatism analysis.Using this strategy,4 noncon-servative sites with high energy contribution to binding of OPBE were chosen as engineering targets,generating variant Mu27 with 99%conversion and 98%(R)ee value at substrate loading of up to 500 mmol/L.MD simu-lations suggested the higher stability and formation probability of Mu27-OPBEproR prereaction state as key rea-sons for the excellent R-enantioselectivity of Mu27 towards OPBE.The success in this study provides a viable approach for rational design of alcohol dehydrogenases with high enantioselectivity towards unnatural substrates.展开更多
基金This study is financially supported by the National Key Research and Development Program of China(No.2018YFA0901800 to H.Yu and L.Ye)Zhejiang Provincial Natural Science Foundation of China(No.LY18B060001 to L.Ye and No.LZ20B060002 to H.Yu)Natural Science Foundation of China(No.21776244 to H.Yu).We are grateful to the constructive suggestions from academician Fen-Er Chen(Department of Chemistry,Fudan University,Shanghai,China)and the support of Discovery Studio software from Fuzhou University platform.
文摘As an important building block for the synthesis of angiotensin-converting enzyme inhibitors,ethyl(R)-2-hy-droxyl-4-phenylbutanoate[(R)-HPBE]has attracted increasing attention.The key to industrial biosynthesis of(R)-HPBE is a biocatalyst that efficiently reduces ethyl 2-oxo-4-phenylbutanoate(OPBE)with high R-enantiose-lectivity.This paper proposed a strategy for identifying key residues involved in enantioselectivity control based on per-residue free energy decomposition and sequence conservatism analysis.Using this strategy,4 noncon-servative sites with high energy contribution to binding of OPBE were chosen as engineering targets,generating variant Mu27 with 99%conversion and 98%(R)ee value at substrate loading of up to 500 mmol/L.MD simu-lations suggested the higher stability and formation probability of Mu27-OPBEproR prereaction state as key rea-sons for the excellent R-enantioselectivity of Mu27 towards OPBE.The success in this study provides a viable approach for rational design of alcohol dehydrogenases with high enantioselectivity towards unnatural substrates.