期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
c-Fos expression within the L_5 spinal cord dorsal horn after spinal nerve ligation in rats Is intraplantar administration of glutamate different from intrathecal administration? 被引量:3
1
作者 Youhong Jin Hongshui Zhu +4 位作者 Zhihua Li Dongfang Li Jianhua Hu Motohide TakemuraO Norifumi YoneharaO 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第6期450-455,共6页
BACKGROUND: Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however, whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE: To examine the... BACKGROUND: Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however, whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE: To examine the effects of intraplantar and intrathecal injection of Glu on c-Fos expression in the L5 spinal cord dorsal horn Ⅰ/Ⅱ and Ⅲ/Ⅳ layers after spinal nerve ligation, and to study the effects of the N-methyI-D-aspartic acid (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoate (D-AP5), and a selective group I mGluR antagonist, 7-hydroyiminocyclo propan[a]chromen-lacarboxylic acid ethyl ester (cpccoEt). DESIGN, TIME AND SETTING: A randomized, controlled animal study was performed at the Department of Pharmacology, Oral Anatomy, and Neurobiology, Osaka University Graduate School of Dentistry, from December 2005 to December 2006. MATERIALS: Glu (5 μmol), D-AP5 (50 nmot) and cpccoEt (250 nmol) were provided by Wako Pure Chemical Industries, Osaka, Japan, and diluted in saline (50 μL). The pH of all solutions was adjusted to 7.4. METHODS: Twelve rats were randomly divided into sham operation (n = 6) and spinal nerve ligation (SNL; n = 6) groups for behavioral assessments of neuropathic pain after ligation surgery of the left L5-6 nerve segment. Another 60 rats were randomly divided into sham operation, SNL, saline-intraplantar, saline-intrathecal, Glu-intraplantar, Glu-intrathecal, D-AP5-intrathecal, Glu-D-AP5-intrathecal, cpccoEt-intrathecal, and Glu-cpccoEt-intrathecal groups, with 6 rats in each group. All groups except sham operation group received a similar SNL. On day 14, rats received a 50-μL injection of saline, Glu, D-AP5, and/or cpccoEt into the left intraplantar or intrathecal L5-4 segments. MAIN OUTCOME MEASURES: The number of c-Fos positive neurons in both Ⅰ/Ⅱ and Ⅲ/Ⅳ spinal layers at L6 was observed using immunohistochemistry 2 hours after administration. RESULTS: (1) SNL increased the level of c-Fos expression in two sides of the spinal cord, particularly on Ⅲ/Ⅳ spinal layers of the ligated side. (2) Intraplantar or intrathecal administration of saline significantly increased the c-Fos labeled neurons in Ⅰ/Ⅱ spinal layers of the ligated side, compared with SNL alone (P 〈 0.01). (3) Intraplantar Glu (5 μmol) increased the number of c-Fos positive neurons in Ⅰ/Ⅱ spinal layers compared with intraplantar saline (P〈 0.01). (4) The number of c-Fos neurons in Ⅰ/Ⅱ spinal layers on both the ipsilateral and contralateral side after intraplantar Glu was lower than intrathecal Glu (P〈 0.01), with a 3-fold higher induction by intrathecal Glu. (5) Co-administration of D-AP5 or cpccoEt reduced the effects of intrathecal Glu (P 〈 0.01). CONCLUSION: Intrathecal Glu increases c-Fos expression more than intraplantar Glu. Antagonists of NMDA and group I mGluRs block this effect. 展开更多
关键词 spinal cord nerve ligation GLUTAMATE C-FOS metabotropic glutamate receptors intrathecal administration intraplantar administration
下载PDF
Human umbilical cord blood stem cells and brainderived neurotrophic factor for optic nerve injury: a biomechanical evaluation 被引量:13
2
作者 Zhong-jun Zhang Ya-jun Li +5 位作者 Xiao-guang Liu Feng-xiao Huang Tie-jun Liu Dong-mei Jiang Xue-man Lv Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1134-1138,共5页
Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit model... Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10^6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood stem cells brain-derived neurotrophic factor biomechanical properties neural regeneration
下载PDF
Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve:viscoelasticity characterization 被引量:10
3
作者 Xue-man Lv Yan Liu +2 位作者 Fei Wu Yi Yuan Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期652-656,共5页
The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation a... The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation and creep properties of the optic nerve change after injury.Moreover,human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal.To validate this hypothesis,a rabbit model of optic nerve injury was established using a clamp approach.At 7 days after injury,the vitreous body received a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells.At 30 days after injury,stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly,with pathological changes in the injured optic nerve also noticeably improved.These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves,and thereby contributes to nerve recovery. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood-derived stem cells brain-derived neurotrophic factors creep histomorphology stress relaxation viscoelasticity neural regeneration
下载PDF
Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury 被引量:3
4
作者 Bao-an Pei Jin-hua Zi +2 位作者 Li-sheng Wu Cun-hua Zhang Yun-zhen Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1650-1655,共6页
Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximat... Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers. 展开更多
关键词 nerve regeneration peripheral nerve pulsed electrical stimulation spinal cord neurons dorsal root ganglion nerve conduction neural regeneration
下载PDF
Combined use of Y-tube conduits with human umbilical cord stem cells for repairing nerve bifurcation defects 被引量:2
5
作者 Aikeremujiang.Muheremu Jun-gang Sun +3 位作者 Xi-yuan Wang Fei Zhang Qiang Ao Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期664-669,共6页
Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduit... Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduits injected with human umbilical cord stem cells could be an effective method to solve such problems,but studies focused on the best type of Y-tube conduit remain controversial.Therefore,the present study evaluated the applicability and efficacy of various types of Y-tube conduits containing human umbilical cord stem cells for treating rat femoral nerve defects on their bifurcation points.At 12 weeks after the bridging surgery that included treatment with different types of Y-tube conduits,there were no differences in quadriceps femoris muscle weight or femoral nerve ultrastructure.However,the Y-tube conduit group with longer branches and a short trunk resulted in a better outcome according to retrograde labeling and electrophysiological analysis.It can be concluded from the study that repairing a mixed nerve defect at its bifurcation point with Y-tube conduits,in particular those with long branches and a short trunk,is effective and results in good outcomes. 展开更多
关键词 nerve regeneration peripheral nerve injury nerve conduit selective nerve regeneration chemotaxis human umbilical cord blood stem cell stem cell transplantation neural regeneration
下载PDF
Protective effect of sodium valproate on motor neurons in the spinal cord following sciatic nerve injury in rats
6
作者 Fei Wu Danmou Xing Zhengren Peng Wusheng Kan 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第9期769-772,共4页
BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and grow... BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and growth cone-associated protein (GAP) 43 in spinal cord. OBJECTIVE: To observe the effect of VPA on Bcl-2 expression and motor neuronal apoptosis in spinal cord of rats following sciatic nerve transection. DESIGN: Randomized controlled experiment. SETTING: Department of Hand Surgery and Microsurgery, Wuhan Puai Hospital. MATERIALS: A total of 30 male healthy SD rats of clean grade and with the body mass of 180-220 g were provided by Experimental Animal Center of Medical College of Wuhan University. Sodium Valproate Tablets were purchases from Hengrui Pharmaceutical Factory, Jiangsu. METHODS: The experiment was performed in the Central Laboratory of Wuhan Puai Hospital and Medical College of Wuhan University from February to May 2006. Totally 30 rats were randomly divided into two groups: treatment group (n =15) and model group (n =15). Longitudinal incision along backside of right hind limbs of rats was made to expose sciatic nerves, which were sharply transected 1 cm distal to the inferior margin of piriform muscle after nerve liberation under operation microscope to establish sciatic nerve injury rat models. Sodium Valproate Tablets were pulverized and diluted into 50 g/L suspension with saline. On the day of operation, the rats in the treatment group received 6 mL/kg VPA suspension by gastric perfusion, once a day, whereas model group received 10 mL/kg saline by gastric perfusion, once a day. L4-6 spinal cords were obtained at days 1, 4, 7, 14 and 28 after operation, respectively. Terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) technique and immunohistochemical method (SP method) were used to detect absorbance (A) of neurons with positive Bcl-2 expression. Apoptotic rate of cells (number of apoptotic cells/total number of cells×100%) was calculated. MAIN OUTCOME MEASURES: A value of neurons with positive Bcl-2 expression and apoptotic rate in spinal cord of rats in the two groups. RESULTS: A total of 30 SD rats were involved in the result analysis. ①expression of positive Bcl-2 neurons: A value of positive Bcl-2 neurons were 0.71±0.02, 0.86±0.04, 1.02±0.06 at days 4, 7 and 14, respectively after operation in the treatment group, which were obviously higher than those in the model group (0.62±0.03, 0.71±0.05, 0.89±0.04, t = 3.10-4.50, P < 0.05). ②apoptotic result of motor neurons: Apoptotic rate of motor neurons in spinal cord was (6.91±0.89)% and (15.12±2.34)% at days 7 and 14 in the treatment group, which was significantly lower than those in the model group [(9.45±1.61)%, (19.35±0.92)%, t = 2.39, 3.03. P < 0.05]. CONCLUSION: VPA can increase expression of Bcl-2 in spinal cord and reduce neuronal apoptosis in rats following sciatic nerve injury, and has protective effect on motor neuron in spinal cord of rats. 展开更多
关键词 VPA Protective effect of sodium valproate on motor neurons in the spinal cord following sciatic nerve injury in rats
下载PDF
Effect of continuous spinal anesthesia with ropivacaine on the ultrastructure of spinal cord and nerve roots in rats
7
作者 孙志华 《外科研究与新技术》 2005年第3期157-157,共1页
To investigate the effects of continuous spinal anesthesia with different concentrations and doses of ropivacaine on the ultrastructure of the spinal cord and nerve roots.Methods Twenty-four male SD rats weighing 220... To investigate the effects of continuous spinal anesthesia with different concentrations and doses of ropivacaine on the ultrastructure of the spinal cord and nerve roots.Methods Twenty-four male SD rats weighing 220~280 g were anesthetized with intraperitoneal 10% chloral hydrate 300~350 mg/kg.A polyurethane microcatheter was inserted into the lumbar subarachnoid space according to the technique described by Yaksh.An 8 cm catheter segment was left in the subarachnoid space.The animals were randomized to receive normal saline,0.5%,0.75% or 1.0% ropivacaine 40 μl intrathecally 3 times at 1.5 h interval.Six hours after the first intrathecal administration the animals were decaptiated and L 1,2 segment of the spinal cord and nerve roots were immediately removed for electron microscopic examination.Results Electron microscopic examination revealed that in animals which received intrathecal (i.t.) normal saline,0.5% or 0.75% ropivacaine the neurolemma of the nerve roots and the mitochondria and endoplasmic reticulum of the neurons in the spinal cord were intact,while in animals which received i.t. 10.% ropivacaine the neurolemma was stratified and partly disrupted and there were swelling of endoplasmic reticulum and vacuole degeneration.Conclusion Six hours continuous spinal anesthesia with 10.% ropivacaine may be injurious to the spinal cord and nerve roots.12 refs,8 figs,1 tab. 展开更多
关键词 Effect of continuous spinal anesthesia with ropivacaine on the ultrastructure of spinal cord and nerve roots in rats
下载PDF
The Rho-associated kinase inhibitors Y27632 and fasudil promote microglial migration in the spinal cord via the ERK signaling pathway 被引量:6
8
作者 Pei-Cai Fu Rong-Hua Tang +3 位作者 Zhi-Yuan Yu Min-Jie Xie Wei Wang Xiang Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期677-683,共7页
Rho-associated kinase(ROCK) is a key regulatory protein involved in inflammatory secretion in microglia in the central nervous system.Our previous studies showed that ROCK inhibition enhances phagocytic activity in ... Rho-associated kinase(ROCK) is a key regulatory protein involved in inflammatory secretion in microglia in the central nervous system.Our previous studies showed that ROCK inhibition enhances phagocytic activity in microglia through the extracellular signal-regulated kinase(ERK) signaling pathway,but its effect on microglial migration was unknown.Therefore,in this study,we investigated the effects of the ROCK inhibitors Y27632 and fasudil on the migratory activity of primary cultured microglia isolated from the spinal cord,and we examined the underlying mechanisms.The microglia were treated with Y27632,fasudil and/or the ERK inhibitor U0126.Cellular morphology was observed by immunofluorescence.Transwell chambers were used to assess cell migration.ERK levels were measured by incell western blot assay.Y27632 and fasudil increased microglial migration,and the microglia were irregularly shaped and had many small processes.These inhibitors also upregulated the levels of phosphorylated ERK protein.The ERK inhibitor U0126 suppressed these effects of Y27632 and fasudil.These findings suggest that the ROCK inhibitors Y27632 and fasudil promote microglial migration in the spinal cord through the ERK signaling pathway. 展开更多
关键词 nerve regeneration spinal cord injury microglia ROCK Y27632 FASUDIL MIGRATION morphology ERK U0126 in-cell western blot assay Transwell chambers neural regeneration
下载PDF
Panax notoginseng saponins improve recovery after spinal cord transection by upregulating neurotrophic factors 被引量:12
9
作者 Bo Wang Yu Li +1 位作者 Xuan-peng Li Yang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1317-1320,共4页
Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and... Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and injected Panax notoginseng saponins(100 mg/kg) or saline 30 minutes after injury. Locomotor functions were assessed using the Basso, Beattie, and Bresnahan(BBB) scale from 1 to 30 days after injury, and immunohistochemistry was carried out in the ventral horn of the spinal cord at 1 and 7 days to determine expression of nerve growth factor(NGF) and brain-derived neurotrophic factor(BDNF). Our results show that at 7–30 days post injury, the BBB score was higher in rats treated with Panax notoginseng saponins than in those that received saline. Furthermore, at 7 days, more NGF- and BDNF-immunoreactive neurons were observed in the ventral horn of the spinal cord of rats that had received Panax notoginseng saponins than in those that received saline. These results indicate that Panax notoginseng saponins caused an upregulation of NGF and BDNF in rats with spinal cord transection, and improved hindlimb motor function. 展开更多
关键词 nerve regeneration Panax notoginseng saponins spinal cord injury nerve growth factor brain-derived neurotrophic factor traditional Chinese medicine neural regeneration
下载PDF
Outcomes of bowel program in spinal cord injury patients with neurogenic bowel dysfunction 被引量:10
10
作者 Zuhal Ozisler Kurtulus Koklu +1 位作者 Sumru Ozel Sibel Unsal-Delialioglu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1153-1158,共6页
In this study, we aimed to determine gastrointestinal problems associated with neurogenic bowel dysfunction in spinal cord injury patients and to assess the efficacy of bowel program on gastrointestinal problems and t... In this study, we aimed to determine gastrointestinal problems associated with neurogenic bowel dysfunction in spinal cord injury patients and to assess the efficacy of bowel program on gastrointestinal problems and the severity of neurogenic bowel dysfunction. Fifty-five spinal cord injury patients were included in this study. A bowel program according to the characteristics of neurogenic bowel dysfunction was performed for each patient. Before and after bowel program, gastrointestinal problems(constipation, difficult intestinal evacuation, incontinence, abdominal pain, abdominal distension, loss of appetite, hemorrhoids, rectal bleeding and gastrointestinal induced autonomic dysreflexia) and bowel evacuation methods(digital stimulation, oral medication, suppositories, abdominal massage, Valsalva maneuver and manual evacuation) were determined. Neurogenic bowel dysfunction score was used to assess the severity of neurogenic bowel dysfunction. At least one gastrointestinal problem was identified in 44(80%) of the 55 patients before bowel program. Constipation(56%, 31/55) and incontinence(42%, 23/55) were the most common gastrointestinal problems. Digital rectal stimulation was the most common method for bowel evacuation, both before(76%, 42/55) and after(73%, 40/55) bowel program. Oral medication, enema and manual evacuation application rates were significantly decreased and constipation, difficult intestinal evacuation, abdominal distention, and abdominal pain rates were significantly reduced after bowel program. In addition, mean neurogenic bowel dysfunction score was decreased after bowel program. An effective bowel program decreases the severity of neurogenic bowel dysfunction and reduces associated gastrointestinal problems in patients with spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury neurogenic bowel bowel program gastrointestinal problems bowel evacuation neural regeneration
下载PDF
Neuroprotective effects of electroacupuncture on early- and late-stage spinal cord injury 被引量:11
11
作者 Min-fei Wu Shu-quan Zhang +3 位作者 Jia-bei Liu Ye Li Qing-san Zhu Rui Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1628-1634,共7页
Previous studies have shown that the neurite growth inhibitor Nogo-A can cause secondary neural damage by activating Rho A. In the present study, we hypothesized that electroacupuncture promotes neurological functiona... Previous studies have shown that the neurite growth inhibitor Nogo-A can cause secondary neural damage by activating Rho A. In the present study, we hypothesized that electroacupuncture promotes neurological functional recovery after spinal cord injury by inhibiting Rho A expression. We established a rat model of acute spinal cord injury using a modification of Allen's method. The rats were given electroacupuncture treatment at Dazhui(Du14), Mingmen(Du4), Sanyinjiao(SP6), Huantiao(GB30), Zusanli(ST36) and Kunlun(BL60) acupoints with a sparsedense wave at a frequency of 4 Hz for 30 minutes, once a day, for a total of 7 days. Seven days after injury, the Basso, Beattie and Bresnahan(BBB) locomotor scale and inclined plane test scores were significantly increased, the number of apoptotic cells in the spinal cord tissue was significantly reduced, and Rho A and Nogo-A m RNA and protein expression levels were decreased in rats given electroacupuncture compared with rats not given electroacupuncture. Four weeks after injury, pathological tissue damage in the spinal cord at the site of injury was alleviated, the numbers of glial fibrillary acidic protein- and neurofilament 200-positive fibers were increased, the latencies of somatosensory-evoked and motor-evoked potentials were shortened, and their amplitudes were increased in rats given electroacupuncture. These findings suggest that electroacupuncture treatment reduces neuronal apoptosis and decreases Rho A and Nogo-A m RNA and protein expression at the site of spinal cord injury, thereby promoting tissue repair and neurological functional recovery. 展开更多
关键词 nerve regeneration spinal cord injury electroacupuncture locomotion Rho A Nogo-A glial fibrillary acidic protein neurofilament 200 neural regeneration
下载PDF
Salvianolic acid B protects the myelin sheath around injured spinal cord axons 被引量:7
12
作者 Zhe Zhu Lu Ding +2 位作者 Wen-feng Qiu Hong-fu Wu Rui Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期487-492,共6页
Salvianolic acid B,an active pharmaceutical compound present in Salvia miltiorrhiza,exerts a neuroprotective effect in animal models of brain and spinal cord injury.Salvianolic acid B can promote recovery of neurologi... Salvianolic acid B,an active pharmaceutical compound present in Salvia miltiorrhiza,exerts a neuroprotective effect in animal models of brain and spinal cord injury.Salvianolic acid B can promote recovery of neurological function;however,its protective effect on the myelin sheath after spinal cord injury remains poorly understood.Thus,in this study,in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation,and the most effective dose was 20 μg/m L.For in vivo investigation,rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks.The amount of myelin sheath and the number of regenerating axons increased,neurological function recovered,and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats.These results indicate that salvianolic acid B can protect axons and the myelin sheath,and can promote the recovery of neurological function.Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. 展开更多
关键词 nerve regeneration spinal cord injury salvianolic acid B oligodendrocytes myelin sheath neural regeneration
下载PDF
Senegenin inhibits neuronal apoptosis after spinal cord contusion injury 被引量:7
13
作者 Shu-quan Zhang Min-fei Wu +4 位作者 Rui Gu Jia-bei Liu Ye Li Qing-san Zhu Jin-lan Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期657-663,共7页
Senegenin has been shown to inhibit neuronal apoptosis,thereby exerting a neuroprotective effect.In the present study,we established a rat model of spinal cord contusion injury using the modified Allen's method.Three... Senegenin has been shown to inhibit neuronal apoptosis,thereby exerting a neuroprotective effect.In the present study,we established a rat model of spinal cord contusion injury using the modified Allen's method.Three hours after injury,senegenin(30 mg/g) was injected into the tail vein for 3 consecutive days.Senegenin reduced the size of syringomyelic cavities,and it substantially reduced the number of apoptotic cells in the spinal cord.At the site of injury,Bax and Caspase-3 m RNA and protein levels were decreased by senegenin,while Bcl-2 m RNA and protein levels were increased.Nerve fiber density was increased in the spinal cord proximal to the brain,and hindlimb motor function and electrophysiological properties of rat hindlimb were improved.Taken together,our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord contusion senegenin thinleaf milkwort root motor function apoptosis electrophysiology neural regeneration
下载PDF
Effects of decompression joint Governor Vessel electro-acupuncture on rats with acute upper cervical spinal cord injury 被引量:8
14
作者 Yan-Lei Wang Ying-Na Qi +5 位作者 Wei Wang Chun-Ke Dong Ping Yi Feng Yang Xiang-Sheng Tang Ming-Sheng Tan 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1241-1246,共6页
Decompression is the major therapeutic strategy for acute spinal cord injury,but there is some debate about the time window for decompression following spinal cord injury.An important goal and challenge in the treatme... Decompression is the major therapeutic strategy for acute spinal cord injury,but there is some debate about the time window for decompression following spinal cord injury.An important goal and challenge in the treatment of spinal cord injury is inhibiting or reversing secondary injury.Governor Vessel electroacupuncture can improve symptoms of spinal cord injury by inhibiting cell apoptosis and improving the microenvironment of the injured spinal cord.In this study,Governor Vessel electroacupuncture combined with decompression at different time points was used to treat acute spinal cord injury.The rat models were established by inserting a balloon catheter into the atlanto-occipital space.The upper cervical spinal cord was compressed for 12 or 48 hours prior to decompression.Electroacupuncture was conducted at the acupoints Dazhui(GV14) and Baihui(GV 20)(2 Hz,15 minutes) once a day for 14 consecutive days.Compared with decompression alone,hind limb motor function recovery was superior after decompression for 12 and 48 hours combined with electroacupuncture.However,the recovery of motor function was not significantly different at 14 days after treatment in rats receiving decompression for 12 hours.Platelet-activating factor levels and caspase-9 protein expression were significantly reduced in rats receiving electroacupuncture compared with decompression alone.These findings indicate that compared with decompression alone,Governor Vessel electroacupuncture combined with delayed decompression(48 hours) is more effective in the treatment of upper cervical spinal cord injury.Governor Vessel electroacupuncture combined with early decompression(12 hours) can accelerate the recovery of nerve movement in rats with upper cervical spinal cord injury.Nevertheless,further studies are necessary to confirm whether it is possible to obtain additional benefit compared with early decompression alone. 展开更多
关键词 nerve regeneration acute spinal cord injury decompression Governor Vessel electroacupuncture platelet-activating factor apoptosis methylprednisolone caspase family upper cervical spine animal model Basso Beattie and Bresnahan locomotor scale neural regeneration
下载PDF
Time representation of mitochondrial morphology and function after acute spinal cord injury 被引量:10
15
作者 Zhi-qiang Jia Gang Li +4 位作者 Zhen-yu Zhang Hao-tian Li Ji-quan Wang Zhong-kai Fan Gang Lv 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期137-143,共7页
Changes in mitochondrial morphology and function play an important role in secondary damage after acute spinal cord injury. We recorded the time representation of mitochondrial morphology and function in rats with acu... Changes in mitochondrial morphology and function play an important role in secondary damage after acute spinal cord injury. We recorded the time representation of mitochondrial morphology and function in rats with acute spinal cord injury. Results showed that mitochondria had an irregular shape, and increased in size. Mitochondrial cristae were disordered and mitochondrial membrane rupture was visible at 2–24 hours after injury. Fusion protein mitofusin 1 expression gradually increased, peaked at 8 hours after injury, and then decreased to its lowest level at 24 hours. Expression of dynamin-related protein 1, amitochondrial fission protein, showed the opposite kinetics. At 2–24 hours after acute spinal cord injury, malondialdehyde content, cytochrome c levels and caspase-3 expression were increased, but glutathione content, adenosine triphosphate content, Na+-K+-ATPase activity and mitochondrial membrane potential were gradually reduced. Furthermore, mitochondrial morphology altered during the acute stage of spinal cord injury. Fusion was important within the first 8 hours, but fission played a key role at 24 hours. Oxidative stress was inhibited, biological productivity was diminished, and mitochondrial membrane potential and permeability were reduced in the acute stage of injury. In summary, mitochondrial apoptosis is activated when the time of spinal cord injury is prolonged. 展开更多
关键词 nerve regeneration spinal cord injury mitochondria fusion fission oxidative damage bioenergy mitochondrial permeability cytochrome c Caspase-3 apoptosis NSFC neural regeneration
下载PDF
Propofol protects against blood-spinal cord barrier disruption induced by ischemia/reperfusion injury 被引量:14
16
作者 Li-jie Xie Jin-xiu Huang +4 位作者 Jian Yang Fen Yuan Shuang-shuang Zhang Qi-jing Yu Ji Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期125-132,共8页
Propofol has been shown to exert neuroprotective effects on the injured spinal cord.However,the effect of propofol on the blood-spinal cord barrier(BSCB) after ischemia/reperfusion injury(IRI) is poorly understood... Propofol has been shown to exert neuroprotective effects on the injured spinal cord.However,the effect of propofol on the blood-spinal cord barrier(BSCB) after ischemia/reperfusion injury(IRI) is poorly understood.Therefore,we investigated whether propofol could maintain the integrity of the BSCB.Spinal cord IRI(SCIRI) was induced in rabbits by infrarenal aortic occlusion for 30 minutes.Propofol,30 mg/kg,was intravenously infused 10 minutes before aortic clamping as well as at the onset of reperfusion.Then,48 hours later,we performed histological and m RNA/protein analyses of the spinal cord.Propofol decreased histological damage to the spinal cord,attenuated the reduction in BSCB permeability,downregulated the m RNA and protein expression levels of matrix metalloprotease-9(MMP-9) and nuclear factor-κB(NF-κB),and upregulated the protein expression levels of occludin and claudin-5.Our findings suggest that propofol helps maintain BSCB integrity after SCIRI by reducing MMP-9 expression,by inhibiting the NF-κB signaling pathway,and by maintaining expression of tight junction proteins. 展开更多
关键词 nerve regeneration spinal cord ischemia reperfusion injury blood–spinal cord barrier propofol matrix metalloprotease-9 nuclear factor-κB tight junction proteins neural regeneration
下载PDF
Effect of glial cells on remyelination after spinal cord injury 被引量:9
17
作者 Hai-feng Wang Xing-kai Liu +10 位作者 Rui Li Ping Zhang Ze Chu Chun-li Wang Hua-rui Liu Jun Qi Guo-yue Lv Guang-yi Wang Bin Liu Yan Li Yuan-yi Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1724-1732,共9页
Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesi... Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesion site are immediately activated,and different cells differentially affect inflammatory reactions after injury.In this review,we aim to discuss the core role of oligodendrocyte precursor cells and crosstalk with the rest of glia and their subcategories in the remyelination process.Activated astrocytes influence proliferation,differentiation,and maturation of oligodendrocyte precursor cells,while activated microglia alter remyelination by regulating the inflammatory reaction after spinal cord injury.Understanding the interaction between oligodendrocyte precursor cells and the rest of glia is necessary when designing a therapeutic plan of remyelination after spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury remyelination oligodendrocyte precursor cells astrocytes oligodendrocytes microglia glial scar demyelination myelin central nervous system neural regeneration
下载PDF
Electroacupuncture at Dazhui(GV14) and Mingmen(GV4) protects against spinal cord injury:the role of the Wnt/β-catenin signaling pathway 被引量:15
18
作者 Xin Wang Su-hua Shi +7 位作者 Hai-jiang Yao Quan-kai Jing Yu-ping Mo Wei Lv Liang-yu Song Xiao-chen Yuan Zhi-gang Li Li-na Qin 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期2004-2011,共8页
Electroacupuncture at Dazhui(GV14) and Mingmen(GV4) on the Governor Vessel has been shown to exhibit curative effects on spinal cord injury; however, the underlying mechanism remains poorly understood. In this stu... Electroacupuncture at Dazhui(GV14) and Mingmen(GV4) on the Governor Vessel has been shown to exhibit curative effects on spinal cord injury; however, the underlying mechanism remains poorly understood. In this study, we established rat models of spinal cord injury using a modified Allen's weight-drop method. Ninety-nine male Sprague-Dawley rats were randomly divided into three equal groups: sham(only laminectomy), SCI(induction of spinal cord injury at T10), and EA(induction of spinal cord injury at T10 and electroacupuncture intervention at GV14 and GV4 for 20 minutes once a day). Rats in the SCI and EA groups were further randomly divided into the following subgroups: 1-day(n = 11), 7-day(n = 11), and 14-day(n = 11). At 1, 7, and 14 days after electroacupuncture treatment, the Basso, Beattie and Bresnahan locomotor rating scale showed obvious improvement in rat hind limb locomotor function, hematoxylin-eosin staining showed that the histological change of injured spinal cord tissue was obviously alleviated, and immunohistochemistry and western blot analysis showed that Wnt1, Wnt3 a, β-catenin immunoreactivity and protein expression in the injured spinal cord tissue were greatly increased compared with the sham and SCI groups. These findings suggest that electroacupuncture at GV14 and GV4 upregulates Wnt1, Wnt3 a, and β-catenin expression in the Wnt/β-catenin signaling pathway, exhibiting neuroprotective effects against spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury electroacupuncture Governor Vessel Dazhui(GV14) acupoint Mingmen(GV4) acupoint Wnt/β-cateninsignaling pathway neuroprotection neural regeneration
下载PDF
Tanshinone ⅡA improves functional recovery in spinal cord injury-induced lower urinary tract dysfunction 被引量:9
19
作者 Yong-dong Yang Xing Yu +2 位作者 Xiu-mei Wang Xiao-hong Mu Feng He 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期267-275,共9页
Tanshinone ⅡA, extracted from Salvia miltiorrhiza Bunge, exerts neuroprotective effects through its anti-inflammatory, anti-oxidative and anti-apoptotic properties. This study intravenously injected tanshinone ⅡA 20... Tanshinone ⅡA, extracted from Salvia miltiorrhiza Bunge, exerts neuroprotective effects through its anti-inflammatory, anti-oxidative and anti-apoptotic properties. This study intravenously injected tanshinone ⅡA 20 mg/kg into rat models of spinal cord injury for 7 consecutive days. Results showed that tanshinone ⅡA could reduce the inflammation, edema as well as compensatory thickening of the bladder tissue, improve urodynamic parameters, attenuate secondary injury, and promote spinal cord regeneration. The number of hypertrophic and apoptotic dorsal root ganglion(L6–S1) cells was less after treatment with tanshinone ⅡA. The effects of tanshinone ⅡA were similar to intravenous injection of 30 mg/kg methylprednisolone. These findings suggested that tanshinone ⅡA improved functional recovery after spinal cord injury-induced lower urinary tract dysfunction by remodeling the spinal pathway involved in lower urinary tract control. 展开更多
关键词 nerve regeneration spinal cord injury tanshinone IIA spinal pathway lower urinary tract dysfunction neurogenic bladder dorsal root ganglion detrusor-sphincter dyssynergia urodynamics neural regeneration
下载PDF
Fine motor skill training enhances functional plasticity of the corticospinal tract after spinal cord injury 被引量:5
20
作者 Jian Liu Xiao-yu Yang +3 位作者 Wei-wei Xia Jian Dong Mao-guang Yang Jian-hang Jiao 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期1990-1996,共7页
Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity h... Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity has become the key to the success of central nervous system repair. It remains controversial whether fine motor skill training contributes to the recovery of neurological function after spinal cord injury. Therefore, we established a rat model of unilateral corticospinal tract injury using a pyramidal tract cutting method. Horizontal ladder crawling and food ball grasping training procedures were conducted 2 weeks before injury and 3 days after injury. The neurological function of rat forelimbs was assessed at 1, 2, 3, 4, and 6 weeks after injury. Axon growth was observed with biotinylated dextran amine anterograde tracing in the healthy corticospinal tract of the denervated area at different time periods. Our results demonstrate that compared with untrained rats, functional recovery was better in the forelimbs and forepaws of trained rats. The number of axons and the expression of growth associated protein 43 were increased at the injury site 3 weeks after corticospinal tract injury. These findings confirm that fine motor skill training promotes central nervous system plasticity in spinal cord injury rats. 展开更多
关键词 nerve regeneration spinal cord injury plasticity axons functional training corticospinal tract growth associated protein 43 neural regeneration
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部