期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
Chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor for neurotrophic keratopathy
1
作者 Jie Wu Yulei Huang +10 位作者 Hanrui Yu Kaixiu Li Shifeng Zhang Guoqing Qiao Xiao Liu Hongmei Duan Yifei Huang Kwok-Fai So Zhaoyang Yang Xiaoguang Li Liqiang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期680-686,共7页
Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic ker... Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic keratopathy are limited.In this study,an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor(CTH-mNGF).Its effectiveness was evaluated in corneal denervation(CD)mice and patients with neurotrophic keratopathy.In the preclinical setting,CTH-mNGF was assessed in a murine corneal denervation model.CTH-mNGF was transparent,thermosensitive,and ensured sustained release of mNGF for over 20 hours on the ocular surface,maintaining the local mNGF concentration around 1300 pg/mL in vivo.Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice.A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy.Patients received topical CTH-mNGF twice daily for 8 weeks.Fluorescein sodium images,Schirmer’s test,intraocular pressure,Cochet-Bonnet corneal perception test,and best corrected visual acuity were evaluated.In total,six patients(total of seven eyes)diagnosed with neurotrophic keratopathy were enrolled.After 8 weeks of CTH-mNGF treatment,all participants showed a decreased area of corneal epithelial defect,as stained by fluorescence.Overall,six out of seven eyes had fluorescence staining scores<5.Moreover,best corrected visual acuity,intraocular pressure,Schirmer’s test and Cochet-Bonnet corneal perception test results showed no significant improvement.An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes.This study demonstrates that CTH-mNGF is transparent,thermosensitive,and has sustained-release properties.Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy,being convenient and cost effective. 展开更多
关键词 chitosan corneal reinnervation murine nerve growth factor neurotrophic keratopathy thermosensitive hydrogel
下载PDF
Electrodeposition of chitosan/graphene oxide conduit to enhance peripheral nerve regeneration 被引量:1
2
作者 Ya-Nan Zhao Ping Wu +6 位作者 Zi-Yuan Zhao Fei-Xiang Chen Ao Xiao Zhi-Yi Yue Xin-Wei Han Yong Zheng Yun Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期207-212,共6页
Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of ch... Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of chitosan/graphene oxide(GO)films with concentrations of GO varying from 0-1 wt%(collectively referred to as CHGF-n)were prepared by an electrodeposition technique.The effects of CHGF-n on proliferation and adhesion abilities of Schwann cells were evaluated.The results showed that Schwann cells exhibited elongated spindle shapes and upregulated expression of nerve regeneration-related factors such as Krox20(a key myelination factor),Zeb2(essential for Schwann cell differentiation,myelination,and nerve repair),and transforming growth factorβ(a cytokine with regenerative functions).In addition,a nerve guidance conduit with a GO content of 0.25%(CHGFC-0.25)was implanted to repair a 10-mm sciatic nerve defect in rats.The results indicated improvements in sciatic functional index,electrophysiology,and sciatic nerve and gastrocnemius muscle histology compared with the CHGFC-0 group,and similar outcomes to the autograft group.In conclusion,we provide a candidate method for the repair of peripheral nerve defects using free-standing chitosan/GO nerve conduits produced by electrodeposition. 展开更多
关键词 CHITOSAN ELECTRODEPOSITION FREE-STANDING graphene oxide nerve conduit nerve factors Schwann cells tissue engineerin
下载PDF
Neurotrophic factors and corneal nerve regeneration 被引量:17
3
作者 Marta Sacchetti Alessandro Lambiase 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第8期1220-1224,共5页
The cornea has unique features that make it a useful model for regenerative medicine studies. It is an avascular, transparent, densely innervated tissue and any pathological changes can be easily detected by slit lamp... The cornea has unique features that make it a useful model for regenerative medicine studies. It is an avascular, transparent, densely innervated tissue and any pathological changes can be easily detected by slit lamp examination. Corneal sensitivity is provided by the ophthalmic branch of the trigeminal nerve that elicits protective reflexes such as blinking and tearing and exerts trophic support by releasing neuromediators and growth factors. Corneal nerves are easily evaluated for both function and morphology using standard instruments such as corneal esthesiometer and in vivo confocal microscope. All local and systemic conditions that are associated with damage of the trigeminal nerve cause the development of neurotrophic keratitis, a rare degenerative disease. Neurotrophic keratitis is characterized by impairment of corneal sensitivity associated with development of persistent epithelial defects that may progress to corneal ulcer, melting and perforation. Current neurotrophic keratitis treatments aim at supporting corneal healing and preventing progression of corneal damage. Novel compounds able to stimulate corneal nerve recovery are in advanced development stage. Among them, nerve growth factor eye drops showed to be safe and effective in stimulating corneal healing and improving corneal sensitivity in patients with neurotrophic keratitis. Neurotrophic keratitis represents an useful model to evaluate in clinical practice novel neuro-regenerative drugs. 展开更多
关键词 neurotrophic keratitis corneal sensitivity nerve regeneration nerve growth factor
下载PDF
Artificial nerve graft constructed by coculture of activated Schwann cells and human hair keratin for repair of peripheral nerve defects 被引量:1
4
作者 Han-Jun Qin Hang Li +5 位作者 Jun-Ze Chen Kai-Rui Zhang Xing-Qi Zhao Jian-Qiang Qin Bin Yu Jun Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1118-1123,共6页
Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secr... Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secrete nerve growth factor, which promotes neural regeneration. Therefore, HHK with Schwann cells may be a more effective approach to repair nerve defects than HHK without Schwann cells. In this study, we established an artificial nerve graft by loading an HHK skeleton with activated Schwann cells. We found that the longitudinal HHK microfilament structure provided adhesion medium, space and direction for Schwann cells, and promoted Schwann cell growth and nerve fiber regeneration. In addition, interleukin-1β not only activates Schwann cells, but also strengthens their activity and increases the expression of nerve growth factors. Activated Schwann cells activate macrophages, and activated macrophages secrete interleukin-1β, which maintains the activity of Schwann cells. Thus, a beneficial cycle forms and promotes nerve repair. Furthermore, our studies have found that the newly constructed artificial nerve graft promotes the improvements in nerve conduction function and motor function in rats with sciatic nerve injury, and increases the expression of nerve injury repair factors fibroblast growth factor 2 and human transforming growth factor B receptor 2. These findings suggest that this artificial nerve graft effectively repairs peripheral nerve injury. 展开更多
关键词 artificial nerve graft bioactive human hair keratin INTERLEUKIN-1Β MACROPHAGES nerve graft nerve growth factor nerve repair peripheral nervous injury Schwann cells
下载PDF
Expression of nerve growth factor mRNA in splenic lymphocytes of bronchial asthma rats and its influencing factors
5
作者 Jihong Dai Yonghong Wang Haixia He 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期1000-1003,共4页
BACKGROUND: Previous research has proved that nerve growth factor (NGF) participates in the onset of asthma by the induction of neurogenic inflammation. OBJECTIVE: To investigate the effect of interleukin-13 (IL... BACKGROUND: Previous research has proved that nerve growth factor (NGF) participates in the onset of asthma by the induction of neurogenic inflammation. OBJECTIVE: To investigate the effect of interleukin-13 (IL-13) and interferon- γ; (IFN- γ ) on the expression of NGF mRNA in the splenic lymphocytes of bronchial asthma rats. DESIGN, TIME AND SETTING: The experiment, a completely randomized study based on cellular immunology, was performed in the Laboratory of Neurology in Chongqing Medical University and the Department of Clinical Pharmacy in College of Clinical Medicine, Chongqing Medical University (Chongqing, China) from January 2006 to April 2007. MATERIALS: Four adult male Wistar rats were used in this study. Rat IL-13, IFN- γ probe and the total RNA extraction kit were produced by Shanghai Sangon Biological Technology & Services Co., Ltd (China). The NGF ELISA kit was a product of Wuhan Boster Bioengineering Co., Ltd (China). A Du-70 automatic UV spectrophotometer was produced by Beckman Company (USA). METHODS: Rats were subjected to 1-mL intraperitoneal injections each containing 100 mg of ovalbumin, and were sensitized by using antigen solution, which was sensitized with 5×10^9 Bacillus pertussis and 100 mg aluminum hydroxide powder. Four rats were challenged with 1% ovalbumin using an ultrasonic nebulizer for 60 minutes to establish an asthmatic model. After rats were anesthetized, splenic lymphocytes were isolated and cultured in medium, which was supplemented with IL-13 or IFN- γ, for 0, 12, 24 or 48 hours. A parallel study was conducted with cultured splenic lymphocytes, which were divided into a control group, an IL-13 group and an IFN- γ group. Culture medium was added with different concentrations of IL-13 (10, 50, 100 U g/L) and IFN- γ; (1, 10, 50 u g/L); 24 hours later, all samples were harvested. MAIN OUTCOME MEASURES: The expression levels of NGF mRNA were detected by reverse transcription-polymerase chain reaction. RESULTS: In the control group, the lymphocytes of the asthmatic model expressed NGF mRNA in a time-dependent manner. Alter lymphocytes were cultured with IL-13 at a final concentration of 50 u g/L for 12, 24 or 48 hours, expression of NGF mRNA was upregulated in a time-dependent manner to higher levels than the basal values at the same time points (P 〈 0.01 ). IL- 13 upregulated the expression of NGF mRNA in a dose-dependent manner, and the NGF mRNA expression levels at middle and high concentrations of IL-3 were significanlly higher than the values at a low concentration of IL-13 (P 〈 0.05). With increasing IFN- γ concentration, the expression of NGF mRNA was gradually downregulated. The low concentration group showed lower levels of NGF mRNA than the blank control group, while the middle and high concentration IFN- γ, groups showed lower levels than the low concentration group (P 〈 0.05). CONCLUSION: In asthmatic rats, IL-13, a Th2 cytokine, upregulates the expression ofNGF mRNA, while IFN- γ, a Thl cytokine, downregulates NGF mRNA expression. The effects of both cytokines were time and dose dependent. Th 1/Th2 cytokine immune imbalance may indirectly induce airway neurogenic inflammation by regulating NGF mRNA expression. 展开更多
关键词 ASTHMA nerve growth factor INTERLEUKIN-13 γ -interferon
下载PDF
Clinical observation of recombinant human nerve growth factor in the treatment of neurotrophic keratitis 被引量:1
6
作者 Mi Hao Yan Cheng +2 位作者 Jie Wu Yu Cheng Jing Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第1期60-66,共7页
AIM:To characterize changes of corneal nerve morphology and tear indices in patients with neurotrophic keratitis(NK)treated with recombinant human nerve growth factor(rhNGF).METHODS:In a prospective observational stud... AIM:To characterize changes of corneal nerve morphology and tear indices in patients with neurotrophic keratitis(NK)treated with recombinant human nerve growth factor(rhNGF).METHODS:In a prospective observational study,six patients(nine eyes)were locally treated with rhNGF.Visual acuity,corneal fluorescein staining score,the heights of the tear river,lipid layer thickness(LLT),tear ferning(TF)test,conjunctival impression cytology(CIC)examination,the densities of cornea subbasal nerve fibers were determined before and after treatment.RESULTS:Compared with baseline,there was a significant difference in corneal fluorescence staining scores(P<0.01);all patient corneal epithelial defects recovered completely within 8wk,but there was no significant improvement in the height of the tear river(P=0.202).LLT was significantly increased when compared with baseline(P=0.042);however,the function of conjunctival goblet cells and mucin content did not significantly improve using the TF test and CIC examination(P=0.557,P=0.539).After 8wk of treatment,the average corneal subbasal nerve fiber density increased significantly(P<0.01),as did the number of corneal nerve fiber branches(P=0.001).CONCLUSION:RhNGF can increase the density of corneal subbasal nerve fibers,promote the healing of persistent corneal epithelial defects and corneal ulcers in patients with NK,also improving tear function partially. 展开更多
关键词 recombinant human nerve growth factor neurotrophic keratitis corneal subbasal nerve
下载PDF
Intranasal nerve growth factor for prevention and recovery of the outcomes of traumatic brain injury
7
作者 Luigi Manni Giorgio Conti +1 位作者 Antonio Chiaretti Marzia Soligo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期773-778,共6页
Traumatic brain injury is one of the main causes of mortality and disability worldwide.Traumatic brain injury is characterized by a primary injury directly induced by the impact,which progresses into a secondary injur... Traumatic brain injury is one of the main causes of mortality and disability worldwide.Traumatic brain injury is characterized by a primary injury directly induced by the impact,which progresses into a secondary injury that leads to cellular and metabolic damages,starting in the first few hours and days after primary mechanical injury.To date,traumatic brain injury is not targetable by therapies aimed at preventing and/or limiting the outcomes of secondary damage but only by palliative therapies.Nerve growth factor is a neurotrophin targeting neuronal and non-neuronal cells,potentially useful in preventing/limiting the outcomes of secondary damage in traumatic brain injury.This potential has further increased in the last two decades since the possibility of reaching neurotrophin targets in the brain through its intranasal delivery has been exploited.Indeed,molecules intranasally delivered to the brain parenchyma may easily bypass the blood-brain barrier and reach their therapeutic targets in the brain,with favorable kinetics,dynamics,and safety profile.In the first part of this review,we aimed to report the traumatic brain injury-induced dysfunctional mechanisms that may benefit from nerve growth factor treatment.In the second part,we then exposed the experimental evidence relating to the action of nerve growth factor(both in vitro and in vivo,after administration routes other than intranasal)on some of these mechanisms.In the last part of the work,we,therefore,discussed the few manuscripts that analyze the effects of treatment with nerve growth factor,intranasally delivered to the brain parenchyma,on the outcomes of traumatic brain injury. 展开更多
关键词 intranasal delivery nerve growth factor PHARMACOLOGY traumatic brain injury
下载PDF
Soluble p75 neurotrophic receptor as a reliable biomarker in neurodegenerative diseases: what is the evidence?
8
作者 Georges Jourdi Samuel Fleury +1 位作者 Imane Boukhatem Marie Lordkipanidzé 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期536-541,共6页
Neurodegenerative diseases are often misdiagnosed,especially when the diagnosis is based solely on clinical symptoms.The p75 neurotrophic receptor(p75^(NTR))has been studied as an index of sensory and motor nerve deve... Neurodegenerative diseases are often misdiagnosed,especially when the diagnosis is based solely on clinical symptoms.The p75 neurotrophic receptor(p75^(NTR))has been studied as an index of sensory and motor nerve development and maturation.Its cleavable extracellular domain(ECD)is readily detectable in various biological fluids including plasma,serum and urine.There is evidence for increased p75NTR ECD levels in neurodegenerative diseases such as Alzheimer’s disease,amyotrophic lateral sclerosis,age-related dementia,schizophrenia,and diabetic neuropathy.Whether p75^(NTR) ECD could be used as a biomarker for diagnosis and/or prognosis in these disorders,and whether it could potentially lead to the development of targeted therapies,remains an open question.In this review,we present and discuss published studies that have evaluated the relevance of this emerging biomarker in the context of various neurodegenerative diseases.We also highlight areas that require further investigation to better understand the role of p75^(NTR) ECD in the clinical diagnosis and management of neurodegenerative disorders. 展开更多
关键词 Alzheimer’s disease amyotrophic lateral sclerosis BIOMARKER DEMENTIA diabetic neuropathy nerve growth factor receptor(NGFR) NEURODEGENERATION p75^(NTR) schizophrenia
下载PDF
Nerve growth factor pretreatment against glutamate-induced hippocampal neuronal injury Action mechanism of phosphatase and tensin homologue deleted on chromosome 10 被引量:12
9
作者 Yae Hu Jiahui Mao Yan Zhu Ailing Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第1期5-9,共5页
BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neur... BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neuronal apoptosis. However, effects of PTEN in NGF-mediated neuroprotection against glutamate excitotoxicity remain poorly understood. OBJECTIVE: To investigate the relationship between NGF inhibition of glutamate-induced injury and PTEN. DESIGN, TIME AND SE'I'rlNG: The randomized, controlled, in vitro study was performed at the Department of Pathophysiology, Medical School of Nantong University, China from October 2007 to March 2008. MATERIALS: Glutamate, NGF, 4, 6-diamidino-2-phenyl-indolediacetate, 3-[4, 5-dimethylthiazol-2-yl]- 2, 5-diphenyl tetrazoliumbromide (M-I-F), and lactate dehydrogenase kit (Sigma, USA), fluorescence microscope and inverted phase contrast microscope (Olympus, Japan) were used in this study. METHODS: Hippocampal neurons were obtained from newborn (〈 24 hours) Sprague Dawley rats and cultured for 7 days. The control group was not treated with any intervention factor, the glutamate group was treated with glutamate (0.2 mmol/L), and NGF groups were treated with NGF (10, 50, 100, and 200 μg/L, respectively) prior to glutamate treatment. MAIN OUTCOME MEASURES: The MTT and lactate dehydrogenase assays were applied to evaluate viability of hippocampal neurons. Morphological changes in hippocampal neurons were observed using an inverted phase-contrast microscope, and neuronal apoptosis was detected by 4, 6-diamidino-2- phenyl-indolediacetate staining. PTEN mRNA and protein expression were measured by reverse transcription-polymerase chain reaction and Western blot analysis, respectively. RESULTS: Glutamate (0.2 mmol/L) induced significantly decreased neuronal viability and greater lactate dehydrogenase efflux compared with the control group (P 〈 0.01). However, compared with the glutamate group, cell viability significantly increased and lactate dehydrogenase efflux decreased in the NGF group with increasing NGF concentrations (P 〈 0.05 or P 〈 0.01). The apoptotic ratio and PTEN mRNA and protein expression decreased in the NGF group compared with the glutamate group (P 〈 0.01). CONCLUSION: Pretreatment with NGF exerted neuroprotective effects against glutamate-induced injury, partially through inhibition of PTEN expression and neuronal apoptosis. 展开更多
关键词 nerve growth factor GLUTAMATE phosphatase and tensin homologue deleted on chromosome 10 hippocampus neurons nerve factor
下载PDF
Electroacupuncture and moxibustion promote regeneration of injured sciatic nerve through Schwann cell proliferation and nerve growth factor secretion 被引量:24
10
作者 Lin-na Hu Jin-xin Tian +7 位作者 Wei Gao Jing Zhu Fang-fang Mou Xiao-chun Ye Yu-pu Liu Ping-ping Lu Shui-jin Shao Hai-dong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期477-483,共7页
Using electroacupuncture and moxibustion to treat peripheral nerve injury is highly efficient with low side effects. However, the electroacupuncture-and moxibustion-based mechanisms underlying nerve repair are still u... Using electroacupuncture and moxibustion to treat peripheral nerve injury is highly efficient with low side effects. However, the electroacupuncture-and moxibustion-based mechanisms underlying nerve repair are still unclear. Here, in vivo and in vitro experiments uncovered one mechanism through which electroacupuncture and moxibustion affect regeneration after peripheral nerve injury. We first established rat models of sciatic nerve injury using neurotomy. Rats were treated with electroacupuncture or moxibustion at acupoints Huantiao (GB30) and Zusanli (ST36). Each treatment lasted 15 minutes, and treatments were given six times a week for 4 consecutive weeks. Behavioral testing was used to determine the sciatic functional index. We used electrophysiological detection to measure sciatic nerve conduction velocity and performed hematoxylin-eosin staining to determine any changes in the gastrocnemius muscle. We used immunohistochemistry to observe changes in the expression of S100—a specific marker for Schwann cells—and an enzyme-linked immunosorbent assay to detect serum level of nerve growth factor. Results showed that compared with the model-only group, sciatic functional index, recovery rate of conduction velocity, diameter recovery of the gastrocnemius muscle fibers, number of S100-immunoreactive cells,and level of nerve growth factor were greater in the electroacupuncture and moxibustion groups. The efficacy did not differ between treatment groups. The serum from treated rats was collected and used to stimulate Schwann cells cultured in vitro. Results showed that the viability of Schwann cells was much higher in the treatment groups than in the model group at 3 and 5 days after treatment. These findings indicate that electroacupuncture and moxibustion promoted nerve regeneration and functional recovery; its mechanism might be associated with the enhancement of Schwann cell proliferation and upregulation of nerve growth factor. 展开更多
关键词 nerve regeneration peripheral nerve injury electroacupuncture moxibustion acupuncture serum Schwann cells nerve growth factor PROLIFERATION REGENERATION sciatic functional index neural regeneration
下载PDF
Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury 被引量:17
11
作者 Luigi Aloe Patrizia Bianchi +2 位作者 Alberto De Bellis Marzia Soligo Maria Luisa Rocco 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第10期1025-1030,共6页
The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could... The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. 展开更多
关键词 nerve regeneration spinal cord injury nerve growth factor intranasal delivery blood-brain barrier motor function LEPTIN NEUROPROTECTION rats neural regeneration
下载PDF
Efficacy and safety of nerve growth factor for the treatment of neurological diseases:a meta-analysis of 64 randomized controlled trials involving 6,297 patients 被引量:12
12
作者 Meng Zhao Xiao-yan Li +1 位作者 Chun-ying Xu Li-ping Zou 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期819-828,共10页
OBJECTIVE: China is the only country where nerve growth factor is approved for large-scale use as a clinical medicine. More than 10 years ago, in 2003, nerve growth factor injection was listed as a national drug. The... OBJECTIVE: China is the only country where nerve growth factor is approved for large-scale use as a clinical medicine. More than 10 years ago, in 2003, nerve growth factor injection was listed as a national drug. The goal of this article is to evaluate comprehensively the efficacy and safety of nerve growth factor for the treatment of neurological diseases. DATA RETRIEVAL: A computer-based retrieval was performed from six databases, including the Cochrane Library, PubMed, EMBASE, Sino Med, CNKI, and the VIP database, searching from the clinical establishment of nerve growth factor for treatment until December 31, 2013. The key words for the searches were "nerve growth factor, randomized controlled trials" in Chinese and in English. DATA SELECTION: Inclusion criteria: any study published in English or Chinese referring to randomized controlled trials of nerve growth factor; patients with neurological diseases such as peripheral nerve injury, central nerve injury, cranial neuropathy, and nervous system infections; patients older than 7 years; similar research methods and outcomes assessing symptoms; and measurement of nerve conduction velocities. The meta-analysis was conducted using Review Manager 5.2.3 software. MAIN OUTCOME MEASURES: The total effective rate, the incidence of adverse effects, and the nerve conduction velocity were recorded for each study. RESULTS: Sixty-four studies involving 6,297 patients with neurological diseases were included. The total effective rate in the group treated with nerve growth factor was significantly higher than that in the control group (P 〈 0.0001, RR: 1.35, 95%CI: 1.30-1.40). The average nerve conduction velocity in the nerve growth factor group was significantly higher than that in the control group (P 〈 0.00001, MD. 4.59 m/s, 95%CI: 4.12-5.06). The incidence of pain or sclero- ma at the injection site in the nerve growth factor group was also higher than that in the control group (P 〈 0.00001, RR: 6.30, 95%CI: 3.53-11.27), but such adverse effects were mild. CONCLUSION: Nerve growth factor can significantly improve nerve function in patients with nervous system disease and is safe and effective. 展开更多
关键词 nerve regeneration neurological diseases nerve growth factor randomized controlledtrials META-ANALYSIS adverse effects nerve conduction velocity neural regeneration
下载PDF
Adenomyosis uterine innervation in mice correlates to nerve growth factor expression,inflammation,and vascularization 被引量:9
13
作者 Yan Li Shaofen Zhang Xian Xia Shien Zou 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第1期15-20,共6页
BACKGROUND: Studies have shown that abnormal innervation is an important factor impacting occurrence and development of pathological pain in endometriosis. OBJECTIVE: To observe uterine innervation of adenomyosis mi... BACKGROUND: Studies have shown that abnormal innervation is an important factor impacting occurrence and development of pathological pain in endometriosis. OBJECTIVE: To observe uterine innervation of adenomyosis mice and to analyze the cause of innervation changes due to nerve growth factor (NGF) expression, inflammation, and vascularization. DESIGN, TIME AND SETTING: This randomized, controlled, animal experiment was performed at the Research Institute of Obstetrics and Gynecology Hospital, and Central Laboratory of Zhongshan Hospital, Fudan University from March to December 2008. MATERIALS: Tamoxifen was provided by Fudan Forward, China. Rabbit anti-mouse NGF was purchased from Santa Cruz Corporation, USA; rabbit anti-protein gene product 9.5 (PGP9.5) and rabbit anti-substance P (SP) were purchased from Chemicon, USA. METHODS: A total of 40 newborn ICR mice were randomly assigned to adenomyosis model and control groups, with 20 animals in each group. Mice in the adenomyosis model group were orally administrated 2.7 μmol/kg tamoxifen on days 2-5 after birth, while the controls were not treated. MAIN OUTCOME MEASURES: Both uteri from all mice were harvested at days 135-145 after birth Expressions of polyclonal PGP9.5 and SP were immunohistochemically detected to demonstrate pan- and sensory nerve fibers. Microvessel density was quantified in the endometrium and myometrium using immunochemical staining for polyclonal rabbit anti-CD31, which stained vessels. Gene expression for NGF, high-affinity tyrosine kinase receptor (trkA), p75 neuretrophin receptor (p75NTR), bradykinin receptor-1 (BKR-1), and 2 (BKR-2), as well as substance P receptor (neurokininl receptor, NK1-R), were detected by reverse transcription-polymerase chain reaction. NGF-13 protein expression was detected by Western blot analysis. RESULTS: More nerve fibers were stained with PGP9.5 in the endometrium and myometrium, and with SP in the endometrium, in adenomyosis mice compared with controls (P 〈 0.01 and P 〈 0.05). Microvessel density in the myometrium of adenomyosis mice was significantly greater than the controls (P 〈 0.01). In the uterus of adenomyosis mice, mRNA expression of NGF and its two receptors (trkA and p75 NTR), BKR-1, and NK1-R, as well as protein expression of NGF-β, were greater than the control mice (P 〈 0.01 or P 〈 0.05). CONCLUSION: Uterine innervation in the adenomyosis mice was increased compared with the controls. Moreover, NGF expression, inflammation, and vascularization, which have been shown to be impact factors of innervation, were abnormal in the uteri of adenomyosis mice. 展开更多
关键词 ADENOMYOSIS INNERVATION nerve growth factor INFLAMMATION VASCULARIZATION
下载PDF
Topical delivery of nerve growth factor for treatment of ocular and brain disorders 被引量:12
14
作者 Gemma Eftimiadi Marzia Soligo +3 位作者 Luigi Manni Daniela Di Giuda Maria Lucia Calcagni Antonio Chiaretti 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第9期1740-1750,共11页
Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor i... Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor is one of the best-described neurotrophins and has advanced to clinical trials for treatment of ocular and brain diseases due to its trophic and regenerative properties. Prior trials over the past few decades have produced conflicting results, which have principally been ascribed to adverse effects of systemic nerve growth factor administration, together with poor penetrance of the blood-brain barrier that impairs drug delivery. Contrastingly, recent studies have revealed that topical ocular and intranasal nerve growth factor administration are safe and effective, suggesting that topical nerve growth factor delivery is a potential alternative to both systemic and invasive intracerebral delivery. The therapeutic effects of local nerve growth factor delivery have been extensively investigated for different ophthalmic diseases, including neurotrophic keratitis, glaucoma, retinitis pigmentosa, and dry eye disease. Further, promising pharmacologic effects were reported in an optic glioma model, which indicated that topically administered nerve growth factor diffused far beyond where it was topically applied. These findings support the therapeutic potential of delivering topical nerve growth factor preparations intranasally for acquired and degenerative brain disorders. Preliminary clinical findings in both traumatic and non-traumatic acquired brain injuries are encouraging, especially in pediatric patients, and clinical trials are ongoing. The present review will focus on the therapeutic effects of both ocular and intranasal nerve growth factor delivery for diseases of the brain and eye. 展开更多
关键词 Alzheimer's disease eye drops group B streptococcus meningitis glioma intranasal delivery neurotrophic keratitis nerve growth factor proNGF stroke traumatic brain injury
下载PDF
Dynamic expression of nerve growth factor and its receptor Trk A after subarachnoid hemorrhage in rat brain 被引量:9
15
作者 Jin-ning Song Zun-wei Liu +4 位作者 Long Sui Bin-fei Zhang Yong-lin Zhao Xu-dong Ma Hua Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第8期1278-1284,共7页
Delayed ischemic neurologic deficit after subarachnoid hemorrhage results from loss of neural cells.Nerve growth factor and its receptor Trk A may promote regeneration of neural cells,but their expression after subara... Delayed ischemic neurologic deficit after subarachnoid hemorrhage results from loss of neural cells.Nerve growth factor and its receptor Trk A may promote regeneration of neural cells,but their expression after subarachnoid hemorrhage remains unclear.In the present study,a rat model of subarachnoid hemorrhage was established using two injections of autologous blood into the cistern magna.Immunohistochemical staining suggested that the expression of nerve growth factor and Trk A in the cerebral cortex and brainstem increased at 6 hours,peaked at 12 hours and decreased 1 day after induction of subarachnoid hemorrhage,whereas the expression in the hippocampus increased at 6 hours,peaked on day 1,and decreased 3 days later.Compared with those for the rats in the sham and saline groups,neurobehavioral scores decreased significantly 12 hours and 3 days after subarachnoid hemorrhage(P 〈 0.05).These results suggest that the expression of nerve growth factor and its receptor Trk A is dynamically changed in the rat brain and may thus participate in neuronal survival and nerve regeneration after subarachnoid hemorrhage. 展开更多
关键词 nerve regeneration subarachnoid hemorrhage nerve growth factor TRKA intrinsic dynamic expression cortex hippocampus BRAINSTEM acute phase neural regeneration
下载PDF
Effect of electroacupuncture on glial fibrillary acidic protein and nerve growth factor in the hippocampus of rats with hyperlipidemia and middle cerebral artery thrombus 被引量:10
16
作者 Na-Ying Xue Dong-Yu Ge +3 位作者 Rui-Juan Dong Hyung-Hwan Kim Xiu-Jun Ren Ya Tu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第1期137-142,共6页
Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of t... Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of the effect of EA in reducing blood lipid level or promoting neural repair after stroke in hyperlipidemic subjects.In this study,EA was applied to a rat model of hyperlipidemia and middle cerebral artery thrombosis and the condition of neurons and astrocytes after hippocampal injury was assessed.Except for the normal group,rats in other groups were fed a high-fat diet throughout the whole experiment.Hyperlipidemia models were established in rats fed a high-fat diet for 6 weeks.Middle cerebral artery thrombus models were induced by pasting 50%FeCl3 filter paper on the left middle cerebral artery for 20 minutes on day 50 as the model group.EA1 group rats received EA at bilateral ST40(Fenglong)for 7 days before the thrombosis.Rats in the EA1 and EA2 groups received EA at GV20(Baihui)and bilateral ST40 for 14 days after model establishment.Neuronal health was assessed by hematoxylin-eosin staining in the brain.Hyperlipidemia was assessed by biochemical methods that measured total cholesterol,triglyceride,low-density lipoprotein and high-density lipoprotein in blood sera.Behavioral analysis was used to confirm the establishment of the model.Immunohistochemical methods were used to detect the expression of glial fibrillary acidic protein and nerve growth factor in the hippocampal CA1 region.The results demonstrated that,compared with the model group,blood lipid levels significantly decreased,glial fibrillary acidic protein immunoreactivity was significantly weakened and nerve growth factor immunoreactivity was significantly enhanced in the EA1 and EA2 groups.The repair effect was superior in the EA1 group than in the EA2 group.These findings confirm that EA can reduce blood lipid,inhibit glial fibrillary acidic protein expression and promote nerve growth factor expression in the hippocampal CA1 region after hyperlipidemia and middle cerebral artery thrombosis.All experimental procedures and protocols were approved by the Animal Use and Management Committee of Beijing University of Chinese Medicine,China(approval No.BUCM-3-2018022802-1002)on April 12,2018. 展开更多
关键词 ASTROCYTES CA1 cerebral ischemia ELECTROACUPUNCTURE glial fibrillary acidic protein hematoxylin-eosin staining HIPPOCAMPUS HYPERLIPIDEMIA immunohistochemistry nerve growth factor
下载PDF
Therapeutic effect of nerve growth factor on cerebral infarction in dogs using the hemisphere anomalous volume ratio of diffusion-weighted magnetic resonance imaging 被引量:9
17
作者 Yong Wang Hui Zhang +5 位作者 Zhe Wang Zuojun Geng Huaijun Liu Haiqing Yang Peng Song Qing Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第24期1873-1880,共8页
A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side.Thirty minutes after occlusion,models were injected with nerve growth factor adjacent to... A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side.Thirty minutes after occlusion,models were injected with nerve growth factor adjacent to the infarct locus.The therapeutic effect of nerve growth factor against cerebral infarction was assessed using the hemisphere anomalous volume ratio,a quantitative index of diffusion-weighted MRI.At 6 hours,24 hours,7 days and 3 months after modeling,the hemisphere anomalous volume ratio was significantly reduced after treatment with nerve growth factor. Hematoxylin-eosin staining,immunohistochemistry,electron microscopy and neurological function scores showed that infarct defects were slightly reduced and neurological function significantly improved after nerve growth factor treatment.This result was consistent with diffusion-weighted MRI measurements.Experimental findings indicate that nerve growth factor can protect against cerebral infarction,and that the hemisphere anomalous volume ratio of diffusion-weighted MRI can be used to evaluate the therapeutic effect. 展开更多
关键词 diffusion-weighted MRI nerve growth factor hemisphere anomalous volume ratio cerebral infarction treatment NEUROPROTECTION brain regeneration neural regeneration
下载PDF
Local administration of icariin contributes to peripheral nerve regeneration and functional recovery 被引量:10
18
作者 Bo Chen Su-ping Niu +7 位作者 Zhi-yong Wang Zhen-wei Wang Jiu-xu Deng Pei-xun Zhang Xiao-feng Yin Na Han Yu-hui Kou Bao-guo Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第1期84-89,共6页
Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local admini... Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local administration of icariin, a major component of Epimedium extract, on peripheral nerve regeneration. A poly(lactic-co-glycolic acid) biological conduit sleeve was used to bridge a 5 mm right sciatic nerve defect in rats, and physiological saline, nerve growth factor, icariin suspension, or nerve growth factor-releasing microsphere suspension was injected into the defect. Twelve weeks later, sciatic nerve conduction velocity and the number of myelinated fibers were notably greater in the rats treated with icariin suspension or nerve growth factor-releasing microspheres than those that had received nerve growth factor or physiological saline. The effects of icariin suspension were similar to those of nerve growth factor-releasing microspheres. These data suggest that icariin acts as a nerve growth factor-releasing agent, and indicate that local ap- plication of icariin after spinal injury can promote peripheral nerve regeneration. 展开更多
关键词 nerve regeneration peripheral nerve sciatic nerve traditional Chinese medicine ICARIIN sleeve bridging suture nerve growth factor NSFC grants neural regeneration
下载PDF
Nerve Growth Factor and Vascular Endothelial Growth Factor: Retrospective Analysis of 63 Patients with Salivary Adenoid Cystic Carcinoma 被引量:12
19
作者 Hao Li Xiao-lin Nong +3 位作者 Qi Chen Yi-ping Yang Jia-quan Li Yan-ning Li 《International Journal of Oral Science》 SCIE CAS CSCD 2010年第1期35-44,共10页
Aim To detect the expression of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) in salivary adenoid cystic carcinoma (SACC) tissues, as well as to determine the correlation between growth... Aim To detect the expression of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) in salivary adenoid cystic carcinoma (SACC) tissues, as well as to determine the correlation between growth factor expression and prognosis in SACC. Methodology Medical records of 63 patients surgically treated for SACC between January 1988 and October 2005 were reviewed. Immunohistochemistry was performed to examine the expression of NGF and VEGF in tumor tissues. Kaplan-Meier analysis and Cox's proportional hazard regression model were applied to assess predictors of survival. Results NGF and VEGF were overexpressed in SACC tissues, compared with those in normal salivary tissues (P〈0.05), and the staining intensity of these two factors was stronger in groups of solid subtype, advanced TNM stage, perineural invasion and recurrence. Patients with high- expression of NGF and VEGF, solid subtype, advanced stage, perineural invasion, recurrence and extended resection alone had worse survival rates (P〈0.05). Conclusion NGF and VEGF are expressed increasingly in the tissues of SACC cases with invasion and metastasis. NGF expression and VEGF expression are independent prognosis factors for survival. 展开更多
关键词 nerve growth factor vascular endothelial growth factor salivary adenoid cystic carcinoma PROGNOSIS
下载PDF
Effects of Co-grafts Mesenchymal Stem Cells and Nerve Growth Factor Suspension in the Repair of Spinal Cord Injury 被引量:11
20
作者 方煌 王俊芳 陈安民 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第2期206-210,共5页
To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n=... To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubeeeo-modified Eagles medium (DMEM , Group Ⅰ ), MSCs (Group Ⅱ ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunoeytoehemieal staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunoeytoehemieal staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P〈0. 05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astroeytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF. 展开更多
关键词 spinal cord injury bone marrow mesenchymal stem cells nerve growth factor TRANSPLANTATION
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部