期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Salvianolic acid B protects the myelin sheath around injured spinal cord axons 被引量:7
1
作者 Zhe Zhu Lu Ding +2 位作者 Wen-feng Qiu Hong-fu Wu Rui Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期487-492,共6页
Salvianolic acid B,an active pharmaceutical compound present in Salvia miltiorrhiza,exerts a neuroprotective effect in animal models of brain and spinal cord injury.Salvianolic acid B can promote recovery of neurologi... Salvianolic acid B,an active pharmaceutical compound present in Salvia miltiorrhiza,exerts a neuroprotective effect in animal models of brain and spinal cord injury.Salvianolic acid B can promote recovery of neurological function;however,its protective effect on the myelin sheath after spinal cord injury remains poorly understood.Thus,in this study,in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation,and the most effective dose was 20 μg/m L.For in vivo investigation,rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks.The amount of myelin sheath and the number of regenerating axons increased,neurological function recovered,and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats.These results indicate that salvianolic acid B can protect axons and the myelin sheath,and can promote the recovery of neurological function.Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. 展开更多
关键词 nerve regeneration spinal cord injury salvianolic acid B oligodendrocytes myelin sheath neural regeneration
下载PDF
The mechanism of astragaloside Ⅳ promoting sciatic nerve regeneration 被引量:14
2
作者 Xiaohong Zhang Jiajun Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第24期2256-2265,共10页
3-O-beta-D-xylopyranosyl-6-O-beta-D-glucopyranosyl-cycloastragenol (astragaloside IV), the main active component of the traditional Chinese medicine astragalus membranaceus, has been shown to be neuroprotective. Thi... 3-O-beta-D-xylopyranosyl-6-O-beta-D-glucopyranosyl-cycloastragenol (astragaloside IV), the main active component of the traditional Chinese medicine astragalus membranaceus, has been shown to be neuroprotective. This study investigated whether astragaloside IV could promote the repair of injured sciatic nerve. Denervated sciatic nerve of mice was subjected to anastomosis. The mice were intraperitoneally injected with 10, 5, 2.5 mg/kg astragaloside IV per day for 8 consecutive days Western blot assay and real-time PCR results demonstrated that growth-associated protein-43 ex- pression was upregulated in mouse spinal cord segments L4-6 after intervention with 10, 5, 2.5 mg/kg astragaloside IV per day in a dose-dependent manner. Luxol fast blue staining and elec- trophysiological detection suggested that astragaloside IV elevated the number and diameter of myelinated nerve fibers, and simultaneously increased motor nerve conduction velocity and action potential amplitude in the sciatic nerve of mice. These results indicated that astragaloside IV con- tributed to sciatic nerve regeneration and functional recovery in mice. The mechanism underlying this effect may be associated with the upregulation of growth-associated protein-43 expression. 展开更多
关键词 neural regeneration traditional Chinese medicine peripheral nerve injury astragaloside IVgrowth-associated protein-43 sciatic nerve nerve myelin sheath myelinated nerve axonsneuroregeneration
下载PDF
Ursolic acid induces neural regeneration after sciatic nerve injury 被引量:2
3
作者 Biao Liu Yan Liu +2 位作者 Guang Yang Zemin Xu Jiajun Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第27期2510-2519,共10页
In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve c... In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tuber-osity. The successful y generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradual y increased at 1-4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L 4-6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice fol owing sciatic nerve injury. 展开更多
关键词 neural regeneration traditional Chinese medicine ursolic acid TRITERPENOID sciatic nerve peripheralnerve injury S100 muscular atrophy nerve myelin sheath grants-supported paper NEUROREGENERATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部