期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Current application and future directions of photobiomodulation in central nervous diseases 被引量:6
1
作者 Muyue Yang Zhen Yang +1 位作者 Pu Wang Zhihui Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第6期1177-1185,共9页
Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions.Photobiomodulation can promote neurogenesis and elici... Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions.Photobiomodulation can promote neurogenesis and elicit anti-apoptotic,antiinflammatory and antioxidative responses.Its therapeutic effects have been demonstrated in studies on neurological diseases,peripheral nerve injuries,pain relief and wound healing.We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019.The NCBI PubMed database,EMBASE database,Cochrane Library and ScienceDirect database were searched.We reviewed 95 papers and analyzed.Photobiomodulation has wide applicability in the treatment of stroke,traumatic brain injury,Parkinson’s disease,Alzheimer’s disease,major depressive disorder,and other diseases.Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases.However,additional studies with adequate sample size are needed to optimize treatment parameters. 展开更多
关键词 Alzheimer’s disease central nervous system diseases major depressive disorder Parkinson’s disease PHOTOBIOMODULATION STROKE traumatic brain injury
下载PDF
Oligodendrocytes in central nervous system diseases:the effect of cytokine regulation 被引量:2
2
作者 Chengfu Zhang Mengsheng Qiu Hui Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2132-2143,共12页
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular funct... Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies. 展开更多
关键词 ASTROCYTE central nervous system disease CXC chemokine cytokine interferonγ INTERLEUKIN MICROGLIA OLIGODENDROCYTE oligodendrocyte precursor cell tumor necrosis factorα
下载PDF
Intranasal administration of stem cell-derived exosomes for central nervous system diseases 被引量:2
3
作者 Shuho Gotoh Masahito Kawabori Miki Fujimura 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1249-1255,共7页
Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,... Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,and other bioactive molecules.Recent findings have provided compelling evidence that exosomes derived from stem cells hold great promise as a therapeutic modality for central nervous system disorders.These exosomes exhibit multifaceted properties including antiapoptotic,anti-inflammatory,neurogenic,and vasculogenic effects.Furthermore,exosomes offer several advantages over stem cell therapy,such as high preservation capacity,low immunogenicity,the ability to traverse the blood-brain barrier,and the potential for drug encapsulation.Consequently,researchers have turned their attention to exosomes as a novel therapeutic avenue.Nonetheless,akin to the limitations of stem cell treatment,the limited accumulation of exosomes in the injured brain poses a challenge to their clinical application.To overcome this hurdle,intranasal administration has emerged as a non-invasive and efficacious route for delivering drugs to the central nervous system.By exploiting the olfactory and trigeminal nerve axons,this approach enables the direct transport of therapeutics to the brain while bypassing the blood-brain barrier.Notably,exosomes,owing to their small size,can readily access the nerve pathways using this method.As a result,intranasal administration has gained increasing recognition as an optimal therapeutic strategy for exosomebased treatments.In this comprehensive review,we aim to provide an overview of both basic and clinical research studies investigating the intranasal administration of exosomes for the treatment of central nervous system diseases.Furthermore,we elucidate the underlying therapeutic mechanisms and offer insights into the prospect of this approach. 展开更多
关键词 central nervous system disease EXOSOME extracellular vesicle intranasal administration stem cell
下载PDF
Role of CD36 in central nervous system diseases 被引量:1
4
作者 Min Feng Qiang Zhou +5 位作者 Huimin Xie Chang Liu Mengru Zheng Shuyu Zhang Songlin Zhou Jian Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期512-518,共7页
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expresse... CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases. 展开更多
关键词 animal experiments ANTAGONISTS CD36 antagonist central nervous system diseases clinical trial curcumin microRNA salvianolic acid B small-molecule drugs sulfosuccinimidyl oleate
下载PDF
Targeting nuclear factor erythroid 2-related factor 2-regulated ferroptosis to treat nervous system diseases
5
作者 Ye-Qi Huang Zheng-Wei Huang Xue-Juan Zhang 《World Journal of Clinical Cases》 SCIE 2024年第33期6655-6659,共5页
By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bi... By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs. 展开更多
关键词 BIBLIOMETRIC nervous system diseases Nuclear factor erythroid 2-related factor 2 Ferroptosis TARGET
下载PDF
Heterogeneity of mature oligodendrocytes in the central nervous system
6
作者 Chao Weng Adam M.R.Groh +4 位作者 Moein Yaqubi Qiao-Ling Cui Jo Anne Stratton G.R.Wayne Moore Jack P.Antel 《Neural Regeneration Research》 SCIE CAS 2025年第5期1336-1349,共14页
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio... Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology. 展开更多
关键词 aging central nervous system diseases electron microscopy HETEROGENEITY immunohistochemistry myelin sheath natural history NEUROGLIA OLIGODENDROGLIA single-cell gene expression analysis
下载PDF
The Value of Traditional Medicine Should not be Underestimated-Traditional Chinese Medicine in Treatment of Autoimmune Diseases
7
作者 Yurii O Novikov Anait P Akopyan 《Chinese Medicine and Culture》 2024年第2期167-173,共7页
Autoimmune diseases of the nervous system(ADNS)are characterized by the formation of a pronounced neurologic deficit and often lead to disability.The attention of doctors and researchers is increasingly attracted by c... Autoimmune diseases of the nervous system(ADNS)are characterized by the formation of a pronounced neurologic deficit and often lead to disability.The attention of doctors and researchers is increasingly attracted by complementary medicine as adjuvant or preventive therapy for various diseases,including autoimmune diseases.Traditional Chinese medicine(TCM)is a combination of treatment methods that include acupuncture,herbal medicine,dietetics,physical exercises,and other methods that are often used in conjunction with recognized approaches of official medical science.The article describes the application of TCM techniques in autoimmune diseases of the nervous system,and demonstrates clinical experience in the use of acupuncture,herbal medicine,diets and physical exercises.Traditional and complementary medicine is an important and often underestimated healthcare resource,especially in the prevention and treatment of autoimmune diseases of the nervous system. 展开更多
关键词 Autoimmune diseases Traditional Chinese medicine nervous diseases
下载PDF
Vimentin as a potential target for diverse nervous system diseases 被引量:4
8
作者 Kang-Zhen Chen Shu-Xian Liu +5 位作者 Yan-Wei Li Tao He Jie Zhao Tao Wang Xian-Xiu Qiu Hong-Fu Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期969-975,共7页
Vimentin is a major type Ⅲ intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protei... Vimentin is a major type Ⅲ intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout(GFAPVIM) mice. However, attenuated glial scar formation in post-stroke in GFAP–/– VIM–/– mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIMmice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination. 展开更多
关键词 ASTROCYTES axonal regeneration bacterial meningitis glial scar GLIOMAS nervous system diseases peripheral nervous system injury spinal cord injury STROKE VIMENTIN
下载PDF
Mesenchymal stem cell-derived extracellular vesicles therapy in traumatic central nervous system diseases:a systematic review and meta-analysis 被引量:3
9
作者 Zhelun Yang Zeyan Liang +5 位作者 Jian Rao Fabin Lin Yike Lin Xiongjie Xu Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2406-2412,共7页
Although there are challenges in treating traumatic central nervous system diseases,mesenchymal stem cell-de rived extracellular vesicles(MSC-EVs) have recently proven to be a promising non-cellular the rapy.We compre... Although there are challenges in treating traumatic central nervous system diseases,mesenchymal stem cell-de rived extracellular vesicles(MSC-EVs) have recently proven to be a promising non-cellular the rapy.We comprehensively evaluated the efficacy of mesenchymal stem cell-de rived extracellular vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies.Our meta-analysis was registered at PROSPERO(CRD42022327904,May 24,2022).To fully retrieve the most relevant articles,the following databases were thoro ughly searched:PubMed,Web of Science,The Cochrane Library,and Ovid-Embase(up to April 1,2022).The included studies were preclinical studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system diseases.The Systematic Review Centre for Laboratory Animal Experimentation(SYRCLE)’s risk of bias tool was used to examine the risk of publication bias in animal studies.After screening 2347studies,60 studies were included in this study.A meta-analysis was conducted for spinal co rd injury(n=52) and traumatic brain injury(n=8).The results indicated that mesenchymal stem cell-derived extracellular vesicles treatment prominently promoted motor function recovery in spinal co rd injury animals,including rat Basso,Beattie and Bresnahan locomotor rating scale scores(standardized mean difference [SMD]:2.36,95% confidence interval [CI]:1.96-2.76,P <0.01,I2=71%) and mouse Basso Mouse Scale scores(SMD=2.31,95% CI:1.57-3.04,P=0.01,I2=60%) compared with controls.Further,mesenchymal stem cell-de rived extracellular vesicles treatment significantly promoted neurological recovery in traumatic brain injury animals,including the modified N eurological Severity Score(SMD=-4.48,95% CI:-6.12 to-2.84,P <0.01,I2=79%) and Foot Fault Test(SMD=-3.26,95% CI:-4.09 to-2.42,P=0.28,I2=21%) compared with controls.Subgroup analyses showed that characteristics may be related to the therapeutic effect of mesenchymal stem cell-de rived extra cellular vesicles.For Basso,Beattie and Bresnahan locomotor rating scale scores,the efficacy of allogeneic mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal stem cell-derived extracellular vesicles(allogeneic:SMD=2.54,95% CI:2.05-3.02,P=0.0116,I2=65.5%;xenogeneic:SMD:1.78,95%CI:1.1-2.45,P=0.0116,I2=74.6%).Mesenchymal stem cellde rived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient ultra centrifugation(SMD=3.58,95% CI:2.62-4.53,P <0.0001,I2=31%) may be more effective than other EV isolation methods.For mouse Basso Mouse Scale scores,placenta-derived mesenchymal stem cell-de rived extracellular vesicles worked better than bone mesenchymal stem cell-derived extracellular vesicles(placenta:SMD=5.25,95% CI:2.45-8.06,P=0.0421,I2=0%;bone marrow:SMD=1.82,95% CI:1.23-2.41,P=0.0421,I2=0%).For modified Neurological Severity Score,bone marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs(bone marrow:SMD=-4.86,95% CI:-6.66 to-3.06,P=0.0306,I2=81%;adipose:SMD=-2.37,95% CI:-3.73 to-1.01,P=0.0306,I2=0%).Intravenous administration(SMD=-5.47,95% CI:-6.98 to-3.97,P=0.0002,I2=53.3%) and dose of administration equal to 100 μg(SMD=-5.47,95% CI:-6.98 to-3.97,P <0.0001,I2=53.3%)showed better res ults than other administration routes and doses.The heterogeneity of studies was small,and sensitivity analysis also indicated stable results.Last,the methodological quality of all trials was mostly satisfactory.In conclusion,in the treatment of traumatic central nervous system diseases,mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor function recovery. 展开更多
关键词 ANIMALS central nervous system diseases extracellular vesicles mesenchymal stromal cell META-ANALYSIS spinal cord injury traumatic brain injury
下载PDF
Emerging trends and hotspots of Nuclear factor erythroid 2-related factor 2 in nervous system diseases 被引量:1
10
作者 Xue-Qin Chang Ling Xu +3 位作者 Yi-Xuan Zuo Yi-Guo Liu Jia Li Hai-Tao Chi 《World Journal of Clinical Cases》 SCIE 2023年第32期7833-7851,共19页
BACKGROUND The Nuclear factor erythroid 2-related factor 2(NRF2)transcription factor has attracted much attention in the context of neurological diseases.However,none of the studies have systematically clarified this ... BACKGROUND The Nuclear factor erythroid 2-related factor 2(NRF2)transcription factor has attracted much attention in the context of neurological diseases.However,none of the studies have systematically clarified this field's research hotspots and evolution rules.AIM To investigate the research hotspots,evolution patterns,and future research trends in this field in recent years.METHODS We conducted a comprehensive literature search in the Web of Science Core Collection database using the following methods:(((((TS=(NFE2 L2))OR TS=(Nfe2 L2 protein,mouse))OR TS=(NF-E2-Related Factor 2))OR TS=(NRF2))OR TS=(NFE2L2))OR TS=(Nuclear factor erythroid2-related factor 2)AND(((((((TS=(neurological diseases))OR TS=(neurological disorder))OR TS=(brain disorder))OR TS=(brain injury))OR TS=(central nervous system disease))OR TS=(CNS disease))OR TS=(central nervous system disorder))OR TS=(CNS disorder)AND Language=English from 2010 to 2022.There are just two forms of literature available:Articles and reviews.Data were processed with the software Cite-Space(version 6.1.R6).RESULTS We analyzed 1884 articles from 200 schools in 72 countries/regions.Since 2015,the number of publications in this field has increased rapidly.China has the largest number of publications,but the articles published in the United States have better centrality and H-index.Among the top ten authors with the most published papers,five of them are from China,and the author with the most published papers is Wang Handong.The institution with the most articles was Nanjing University.To their credit,three of the top 10 most cited articles were written by Chinese scholars.The keyword co-occurrence map showed that"oxidative stress","NRF2","activation","expression"and"brain"were the five most frequently used keywords.CONCLUSION Research on the role of NRF2 in neurological diseases continues unabated.Researchers in developed countries published more influential papers,while Chinese scholars provided the largest number of articles.There have been numerous studies on the mechanism of NRF2 transcription factor in neurological diseases.NRF2 is also emerging as a potentially effective target for the treatment of neurological diseases.However,despite decades of research,our knowledge of NRF2 transcription factor in nervous system diseases is still limited.Further studies are needed in the future. 展开更多
关键词 Nuclear factor erythroid 2-related factor 2 nervous system diseases BRAIN Expression ACTIVATION Ferroptosis
下载PDF
Changing trends in nervous system diseases among hospitalized children in the Chongqing region
11
作者 Xin Zou Nong Xiao Bei Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第6期683-686,共4页
OBJECTIVE: To investigate the changing trends of nervous system diseases among hospitalized children and the risk factors of death. METHOD: The disease was statistically classified according to the International Sta... OBJECTIVE: To investigate the changing trends of nervous system diseases among hospitalized children and the risk factors of death. METHOD: The disease was statistically classified according to the International Statistical Classification of Disease and Health Problem (ICD10). The retrospective investigation includes demographic characteristics, as well as categories and fatality rates for nervous system diseases. All data was statistically analyzed. RESULTS: The percentage of nervous system diseases among inpatients in all wards was 2.4% (2 537/ 107 250) between January 1993 and December 1999, and 3.6% (6 082/170 619) between January 2000 and December 2006. The first ten patterns of various etiologic forms of nervous system diseases were identical-epilepsies and seizures, infections of the central nervous system, autoimmune and demyelination disorders, cerebral palsy, motor unit disorders, hypoxic-ischemic encephalopathy, hydrocephalus, extra-pyramidal disorders, congenital abnormalities of nervous system, and headache. Epilepsies and seizures took first place in both year groups, with 29.4% and 35%, respectively. Bacterial infections were responsible for the majority of cranial infections in both year groups, with 78.9% and 63.6% respectively. The death rate in the year group January 2000 to December 2006 was significantly less than in the year group January 1993 to December 1999 ( Х^2 = 27.832, P 〈 0.01 ). CONCLUSION: Among all nervous system diseases, epilepsies and seizures were among the most common with the lowest fatality rate. 展开更多
关键词 CHILDREN nervous system diseases EPIDEMIOLOGY
下载PDF
Research progress of sphingosine 1-phosphate and its signal transduction in central nervous system diseases
12
作者 BEN Xin-yu YI Xi-nan LI Qi-fu 《Journal of Hainan Medical University》 CAS 2023年第23期64-69,共6页
Sphingosine 1-phosphate(S1P),as a sphingolipid metabolite,has become a key substance in regulating various physiological processes,involved in differentiation,proliferation,migration,morphogenesis,cytoskeleton formati... Sphingosine 1-phosphate(S1P),as a sphingolipid metabolite,has become a key substance in regulating various physiological processes,involved in differentiation,proliferation,migration,morphogenesis,cytoskeleton formation,adhesion,apoptosis,etc.process.Sphingosine 1-phosphate can not only activate the S1P-S1PR signaling pathway by binding to the corresponding receptors on the cell membrane,but also play a role in the cell.In recent years,studies have found that there is a certain relationship between its level changes and the occurrence and development of central nervous system diseases.This article reviews the latest knowledge of sphingosine-1-phosphate in the occurrence and treatment of nervous system diseases,and further clarifies its molecular mechanism in the treatment and development of central nervous system diseases. 展开更多
关键词 Sphingosine 1-phosphate Sphingolipid metabolism Central nervous system diseases Sphingosine kinase S1P receptor
下载PDF
Advances of Research on Auricular Vagus Nerve Stimulation for Treatment of Nervous System Diseases
13
作者 Jia’en Yang Ning Jia 《Journal of Biosciences and Medicines》 2023年第4期1-14,共14页
As a new type of nerve regulation technology, Vagus Nerve Stimulation is currently used in the treatment of nervous system diseases. Auricular Vagus Nerve Stimulation has become one of the research hotspots in this fi... As a new type of nerve regulation technology, Vagus Nerve Stimulation is currently used in the treatment of nervous system diseases. Auricular Vagus Nerve Stimulation has become one of the research hotspots in this field, because there is no implantation risk. However, there is no unified standard for the treatment parameters of aVNS for nervous system diseases. In this paper, the research progress of the anatomical structure and parameters of the vagus nerve and its role in nervous system diseases are reviewed to provide basis for further research. 展开更多
关键词 Auricular Vagus Nerve Stimulation nervous System diseases REVIEW
下载PDF
Editor's Choice—Meta analysis of acupuncture efficacy for the treatment of nervous system diseases
14
《Neural Regeneration Research》 SCIE CAS CSCD 2011年第27期2145-2145,共1页
Meta analysis of randomized, controlled, clinical studies of acupuncture for the treatment of nervous system diseases has demonstrated that acupuncture effectively treats optic atrophy and depression. However, the qua... Meta analysis of randomized, controlled, clinical studies of acupuncture for the treatment of nervous system diseases has demonstrated that acupuncture effectively treats optic atrophy and depression. However, the quality of selected studies is low and evidence is inadequate. Therefore, 展开更多
关键词 Meta analysis of acupuncture efficacy for the treatment of nervous system diseases
下载PDF
Telemedicine and digital management in repair and regeneration after nerve injury and in nervous system diseases
15
作者 Weijun Zhu Yunkai Zhai +1 位作者 Dongxu Sun Jie Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第16期1567-1568,共2页
To the editor, We read with interest the article, "Facilitating transparency in spinal cord injury studies using data standards and ontol- ogles" by Professor Vance E Lemmon, University of Miami, USA (Lemmon et al... To the editor, We read with interest the article, "Facilitating transparency in spinal cord injury studies using data standards and ontol- ogles" by Professor Vance E Lemmon, University of Miami, USA (Lemmon et al., 2014) and would like to add to the discussion on digital management in spinal cord injury. We have analyzed the advancements in the treatment of spinal cord injury, traumatic brain jury. Encouraging outcomes injury and peripheral nerve in- have been achieved in the area of regulating axon growth in vivo and in vitro. However, such a large amount of information neither provides in-depth insight for other scholars nor provides detailed therapeutic nrotocols for clinical studies. 展开更多
关键词 Telemedicine and digital management in repair and regeneration after nerve injury and in nervous system diseases
下载PDF
Overview of emerging therapies for demyelinating diseases
16
作者 Robert Medina Ann-Marie Derias +2 位作者 Maria Lakdawala Skye Speakman Brandon Lucke-Wold 《World Journal of Clinical Cases》 SCIE 2024年第30期6361-6373,共13页
This paper provides an overview of autoimmune disorders of the central nervous system,specifically those caused by demyelination.We explore new research regarding potential therapeutic interventions,particularly those... This paper provides an overview of autoimmune disorders of the central nervous system,specifically those caused by demyelination.We explore new research regarding potential therapeutic interventions,particularly those aimed at inducing remyelination.Remyelination is a detailed process,involving many cell types–oligodendrocyte precursor cells(OPCs),astrocytes,and microglia–and both the innate and adaptive immune systems.Our discussion of this process includes the differentiation potential of neural stem cells,the function of adult OPCs,and the impact of molecular mediators on myelin repair.Emerging therapies are also explored,with mechanisms of action including the induction of OPC differentiation,the transplantation of mesenchymal stem cells,and the use of molecular mediators.Further,we discuss current medical advancements in relation to many myelin-related disorders,including multiple sclerosis,optic neuritis,neuromyelitis optica spectrum disorder,myelin oligodendrocyte glycoprotein antibodyassociated disease,transverse myelitis,and acute disseminated encephalomyelitis.Beyond these emerging systemic therapies,we also introduce the dimethyl fumarate/silk fibroin nerve conduit and its potential role in the treatment of peripheral nerve injuries.Despite these aforementioned scientific advancements,this paper maintains the need for ongoing research to deepen our understanding of demyelinating diseases and advance therapeutic strategies that enhance affected patients’quality of life. 展开更多
关键词 Central nervous system disease AUTOIMMUNE REMYELINATION DEMYELINATION MYELIN OLIGODENDROCYTE Emerging therapies Multiple Sclerosis
下载PDF
The role of axon guidance molecules in the pathogenesis of epilepsy
17
作者 Zheng Liu Chunhua Pan Hao Huang 《Neural Regeneration Research》 SCIE CAS 2025年第5期1244-1257,共14页
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target no... Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition. 展开更多
关键词 axon guidance drug-resistant epilepsy EPILEPSY nerve regeneration nervous system diseases neural pathways neuroinflammatory diseases neuronal plasticity NEURONS synaptic remodeling
下载PDF
Connexin:a potential novel target for protecting the central nervous system? 被引量:6
18
作者 Hong-yan Xie Yu Cui +1 位作者 Fang Deng Jia-chun Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期659-666,共8页
Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions un... Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings re-garding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer’s disease, Parkinson’s disease, X-linked Charcot-Marie-Tooth disease, Peli-zaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system. 展开更多
关键词 CONNEXIN gap junction biosynthetic pathways BIODEGRADATION BRAIN central nervous system diseases
下载PDF
MicroRNAs of microglia: wrestling with central nervous system disease 被引量:5
19
作者 Xiao-Hua Wang Tian-Long Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第12期2067-2072,共6页
Microglia serve as brain-resident myeloid cells that affect cerebral development, ischemia, neurodegeneration, and neuro-viral infection. MicroRNAs play a key role in central nervous system disease through post-transc... Microglia serve as brain-resident myeloid cells that affect cerebral development, ischemia, neurodegeneration, and neuro-viral infection. MicroRNAs play a key role in central nervous system disease through post-transcriptional regulation. Indeed, evidence shows that microRNAs are one of the most important regulators mediating microglial activation, polarization, and autophagy, and subsequently affecting neuroinflammation and the outcome of central nervous system disease. In this review, we provide insight into the function of microRNAs, which may be an attractive strategy and influential treatment for microglia-related central nervous system dysfunction. Moreover, we comprehensively describe how microglia fight against central nervous system disease via multiple functional microRNAs. 展开更多
关键词 MICROGLIA NEURODEGENERATION central nervous system disease MICRORNAS activation polarization AUTOPHAGY neural regeneration
下载PDF
The Olig family affects central nervous system development and disease 被引量:5
20
作者 Botao Tan Jing Yu +3 位作者 Ying Yin Gongwei Jia Wei Jiang Lehua Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第3期329-336,共8页
Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neura... Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop- ment and related diseases. 展开更多
关键词 nerve regeneration brain injury spinal cord injury review Olig family oligodendro-cytes ASTROCYTES central nervous system disease DEMYELINATION development DIFFERENTIATION NSFCgrant neural regeneration
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部