期刊文献+
共找到919篇文章
< 1 2 46 >
每页显示 20 50 100
Role of copper in central nervous system physiology and pathology
1
作者 Martina Locatelli Cinthia Farina 《Neural Regeneration Research》 SCIE CAS 2025年第4期1058-1068,共11页
Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central ne... Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis. 展开更多
关键词 ASTROCYTES central nervous system COPPER CUPRIZONE multiple sclerosis MYELIN neurodegenerative disorders
下载PDF
Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases
2
作者 Minghuang Gao Xinyue Wang +5 位作者 Shijie Su Weicheng Feng Yaona Lai Kongli Huang Dandan Cao Qi Wang 《Neural Regeneration Research》 SCIE CAS 2025年第3期763-778,共16页
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain met... Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity. 展开更多
关键词 central nervous system meningeal lymphatic vessels IMMUNITY myeloid cells lymphatic cells neurodegenerative disease
下载PDF
Microglia lactylation in relation to central nervous system diseases
3
作者 Hui Yang Nan Mo +5 位作者 Le Tong Jianhong Dong Ziwei Fan Mengxian Jia Juanqing Yue Ying Wang 《Neural Regeneration Research》 SCIE CAS 2025年第1期29-40,共12页
The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous syst... The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases. 展开更多
关键词 brain central nervous system GLYCOLYSIS immune response INFLAMMATION lactate metabolism LACTATE lactylation MICROGLIA neurodegenerative diseases
下载PDF
Lipid droplets in the nervous system:involvement in cell metabolic homeostasis
4
作者 Yuchen Zhang Yiqing Chen +3 位作者 Cheng Zhuang Jingxuan Qi Robert Chunhua Zhao Jiao Wang 《Neural Regeneration Research》 SCIE CAS 2025年第3期740-750,共11页
Lipid droplets serve as primary storage organelles for neutral lipids in neurons,glial cells,and other cells in the nervous system.Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic... Lipid droplets serve as primary storage organelles for neutral lipids in neurons,glial cells,and other cells in the nervous system.Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum.Previously,lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis;however,recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system.In addition to their role in regulating cell metabolism,lipid droplets play a protective role in various cellular stress responses.Furthermore,lipid droplets exhibit specific functions in neurons and glial cells.Dysregulation of lipid droplet formation leads to cellular dysfunction,metabolic abnormalities,and nervous system diseases.This review aims to provide an overview of the role of lipid droplets in the nervous system,covering topics such as biogenesis,cellular specificity,and functions.Additionally,it will explore the association between lipid droplets and neurodegenerative disorders.Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases. 展开更多
关键词 Alzheimer's disease lipid droplet biogenesis lipid droplets lipid metabolism nervous system neurodegenerative disorders oxidative stress Parkinson's disease
下载PDF
Heterogeneity of mature oligodendrocytes in the central nervous system
5
作者 Chao Weng Adam M.R.Groh +4 位作者 Moein Yaqubi Qiao-Ling Cui Jo Anne Stratton G.R.Wayne Moore Jack P.Antel 《Neural Regeneration Research》 SCIE CAS 2025年第5期1336-1349,共14页
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio... Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology. 展开更多
关键词 aging central nervous system diseases electron microscopy HETEROGENEITY immunohistochemistry myelin sheath natural history NEUROGLIA OLIGODENDROGLIA single-cell gene expression analysis
下载PDF
Liposomes as versatile agents for the management of traumatic and nontraumatic central nervous system disorders:drug stability,targeting efficiency,and safety
6
作者 Mingyu Zhang Chunyu Xiang +4 位作者 Renrui Niu Xiaodong He Wenqi Luo Wanguo Liu Rui Gu 《Neural Regeneration Research》 SCIE CAS 2025年第7期1883-1899,共17页
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these... Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis brain tumors central nervous system Huntington's disease liposome drug delivery neurological disorders Parkinson's disease spinal cord injury traumatic brain injury
下载PDF
High mobility group box 1 in the central nervous system:regeneration hidden beneath inflammation
7
作者 Hanki Kim Bum Jun Kim +4 位作者 Seungyon Koh Hyo Jin Cho Xuelian Jin Byung Gon Kim Jun Young Choi 《Neural Regeneration Research》 SCIE CAS 2025年第1期107-115,共9页
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex... High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1. 展开更多
关键词 central nervous system damage-associated molecular pattern ethyl pyruvate glycyrhizzin high mobility group box 1 INFLAMMATION neural stem cells NEURODEVELOPMENT oligodendrocyte progenitor cells redox status REGENERATION
下载PDF
Naringin as a beneficial natural product against degeneration of the nigrostriatal dopaminergic projection in the adult brain 被引量:1
8
作者 Sang Ryong Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第8期1375-1376,共2页
The progressive degeneration of nigral dopaminergic(DA)neurons and the biochemical reduction of striatal dopamine levels are associated with major clinical symptoms,including tremor at rest,rigidity of the limbs,slo... The progressive degeneration of nigral dopaminergic(DA)neurons and the biochemical reduction of striatal dopamine levels are associated with major clinical symptoms,including tremor at rest,rigidity of the limbs,slowness and paucity of voluntary movement(bradykinesia). 展开更多
关键词 Naringin as a beneficial natural product against degeneration of the nigrostriatal dopaminergic projection in the adult brain DA TOR PD
下载PDF
Nigrostriatal Degeneration in Parkinson Disease: Evaluation by Diffusion Tensor Tract-Specific Analysis
9
作者 Alina Abulaiti Koji Kamagata +3 位作者 Yumiko Motoi Masaaki Hori Nobutaka Hattori Shigeki Aoki 《Open Journal of Radiology》 2015年第4期199-204,共6页
Diffusion tensor tractography was used to evaluate whether diffusion metrics in the nigrostriatal pathway could diagnose Parkinson disease. Diffusion tensor imaging was performed on 30 patients with Parkinson disease ... Diffusion tensor tractography was used to evaluate whether diffusion metrics in the nigrostriatal pathway could diagnose Parkinson disease. Diffusion tensor imaging was performed on 30 patients with Parkinson disease and 32 healthy controls by using a 3.0 Tesla magnetic resonance imaging system. Diffusion tensor tractography was used for both groups to visualize the nigrostriatal and corticospinal tracts. The fractional anisotropy (FA) and mean diffusivity (MD) of the tracts were evaluated. Receiver operating characteristic (ROC) analysis was used to determine whether diffusion metrics of the nigrostriatal pathway could be used to diagnose Parkinson disease. Mean FA values (±SD) of the nigrostriatal tract in Parkinson disease patients (0.41 ± 0.025) were significantly lower than those in the control group (0.43 ± 0.022;p = 0.00068) and showed a sensitivity of 66.7% and specificity of 60%. There were no significant differences in the MD values of the nigrostriatal tract or the FA and MD values of the corticospinal tract between Parkinson disease patients and the control group. FA values of the nigrostriatal pathway in Parkinson disease patients were significantly lower than those in normal, healthy individuals. Reduced FA was generally thought to reflect neuronal loss, gliosis, or demyelination of nerve fibers. This result might provide a useful measure for diagnosing Parkinson disease and evaluating patients’ clinical condition. 展开更多
关键词 nigrostriatal Pathway Diffusion MRI NEURODEGENERATIVE Disorders PARKINSON Disease
下载PDF
Intranasal administration of stem cell-derived exosomes for central nervous system diseases 被引量:2
10
作者 Shuho Gotoh Masahito Kawabori Miki Fujimura 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1249-1255,共7页
Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,... Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,and other bioactive molecules.Recent findings have provided compelling evidence that exosomes derived from stem cells hold great promise as a therapeutic modality for central nervous system disorders.These exosomes exhibit multifaceted properties including antiapoptotic,anti-inflammatory,neurogenic,and vasculogenic effects.Furthermore,exosomes offer several advantages over stem cell therapy,such as high preservation capacity,low immunogenicity,the ability to traverse the blood-brain barrier,and the potential for drug encapsulation.Consequently,researchers have turned their attention to exosomes as a novel therapeutic avenue.Nonetheless,akin to the limitations of stem cell treatment,the limited accumulation of exosomes in the injured brain poses a challenge to their clinical application.To overcome this hurdle,intranasal administration has emerged as a non-invasive and efficacious route for delivering drugs to the central nervous system.By exploiting the olfactory and trigeminal nerve axons,this approach enables the direct transport of therapeutics to the brain while bypassing the blood-brain barrier.Notably,exosomes,owing to their small size,can readily access the nerve pathways using this method.As a result,intranasal administration has gained increasing recognition as an optimal therapeutic strategy for exosomebased treatments.In this comprehensive review,we aim to provide an overview of both basic and clinical research studies investigating the intranasal administration of exosomes for the treatment of central nervous system diseases.Furthermore,we elucidate the underlying therapeutic mechanisms and offer insights into the prospect of this approach. 展开更多
关键词 central nervous system disease EXOSOME extracellular vesicle intranasal administration stem cell
下载PDF
Batroxobin inhibits astrocyte activation following nigrostriatal pathway injury
11
作者 Zhuo Zhang Xue Bao Dan Li 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第4期721-726,共6页
Batroxobin is a thrombin-like serine protease from the venom of the Bothrops atrox and Bothrops moojeni snake species.Sirtuin 1(Sirt1)has been shown to play an important role in neuroprotection after traumatic brain i... Batroxobin is a thrombin-like serine protease from the venom of the Bothrops atrox and Bothrops moojeni snake species.Sirtuin 1(Sirt1)has been shown to play an important role in neuroprotection after traumatic brain injury.However,its underlying mechanism of action remains poorly understood.The purpose of this study was to investigate whether the mechanism by which batroxobin participates in the activation of astrocytes is associated with Sirt1.Mouse models of nigrostriatal pathway injury were established.Immediately after modeling,mice were intraperitoneally administered 39 U/kg batroxobin.Batroxobin significantly reduced the expression of cleaved caspase-3 in both the substantia nigra and striatum,inhibited neuronal apoptosis,and promoted the recovery of rat locomotor function.These changes coincided with a remarkable reduction in astrocyte activation.Batroxobin also reduced Sirt1 expression and extracellular signal-regulated kinase activation in brain tissue.Intraperitoneal administration of the Sirt1-specific inhibitor EX527(5 mg/kg)30 minutes prior to injury could inhibit the abovementioned effects.In mouse astrocyte cultures,1 ng/mL batroxobin attenuated interleukin-1β-induced activation of astrocytes and extracellular signal-regulated kinase.EX527 could also inhibit the effects of batroxobin.These findings suggest that batroxobin inhibits astrocyte activation after nigrostriatal pathway injury through the Sirt1 pathway.This study was approved by the Animal Ethics Committee of China Medical University,China(approval No.CMU2020037)on July 19,2015. 展开更多
关键词 ASTROCYTE brain central nervous system factor INJURY PATHWAY
下载PDF
Crosstalk among mitophagy,pyroptosis,ferroptosis,and necroptosis in central nervous system injuries 被引量:1
12
作者 Li Zhang Zhigang Hu +1 位作者 Zhenxing Li Yixing Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1660-1670,共11页
Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and... Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients. 展开更多
关键词 central nervous system injuries death pyroptosis ferroptosis inflammation MITOPHAGY NECROPTOSIS programmed cell
下载PDF
Oligodendrocytes in central nervous system diseases:the effect of cytokine regulation 被引量:1
13
作者 Chengfu Zhang Mengsheng Qiu Hui Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2132-2143,共12页
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular funct... Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies. 展开更多
关键词 ASTROCYTE central nervous system disease CXC chemokine cytokine interferonγ INTERLEUKIN MICROGLIA OLIGODENDROCYTE oligodendrocyte precursor cell tumor necrosis factorα
下载PDF
Role of CD36 in central nervous system diseases 被引量:1
14
作者 Min Feng Qiang Zhou +5 位作者 Huimin Xie Chang Liu Mengru Zheng Shuyu Zhang Songlin Zhou Jian Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期512-518,共7页
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expresse... CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases. 展开更多
关键词 animal experiments ANTAGONISTS CD36 antagonist central nervous system diseases clinical trial curcumin microRNA salvianolic acid B small-molecule drugs sulfosuccinimidyl oleate
下载PDF
Feasibility of establishing model of Parkinson disease by injecting 6-hydroxydopamine at different parts of the nigrostriatal pathway in the brain of rats
15
作者 Yuefei Shen Xuean Mo Guifang Long 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第2期126-129,共4页
BACKGROUND: Previous researches found that animal models with Parkinson disease (PD) could be established by injecting 6-hydroxydopamine (6-OHDA) into medial forebrain bundle (MFB), substantia nigra compacta (... BACKGROUND: Previous researches found that animal models with Parkinson disease (PD) could be established by injecting 6-hydroxydopamine (6-OHDA) into medial forebrain bundle (MFB), substantia nigra compacta (SNC) and caudate-putamen complex (CPU) of the nigrostriatal pathway. OBJECTIVE : To compare behavioral, biochemica 6-OHDA injections in the areas of MFB, SNC and DESIGN: Controlled observational study and histological properties of these rats undergoing the CPU respectively. SEI-IING: Department of Neurology, First Affiliated Hospital of Guangxi Medical University MATERIALS: A total of 64 adult female SD rats weighing 180-230 g were provided by the Animal Experimental Center of Guangxi Medical University. 6-OHDA (Sigma Company, USA); Brain solid positioner (Standard model 51600, Stoelting Co., IL, USA); rotational monitoring of little animal (type QL-1, USA); high liquid chromatography (HLC, Waters Company). METHOOS: The experiment was carried out in the Medical Experimental Center of Guangxi Medical University from February to December 2005. ① According to digital table, 64 SD rats were divided into MFB group, SNC group, CPU group and control group with 16 in each group. On the basis of the brain atlas of Paxinos, rats in the first three groups were injected with 5 μL 6-OHDA into right MFB (0 mm of line of incisor tooth, A/P 4.4 mm, L/R 1.2 mm, ON -7.8 mm), SNC (line of incisor tooth just equal to horizon, A/P -4.8 mm, L/R 1.6 mm, ON -7.8 mm) and CPU (0 mm of line of incisor tooth, A/P 1.2 mm, L/R 2.7 mm, ON -5.4 mm), respectively. The rats in control group were injected with 5 μL ascorbic acid solution (2 g/L). One week after operation, 0.1 g/L apomorphine (Apo, 0.05 mg/kg) was subcutaneously injected into neck and then rotational behavior induced by Apo was recorded once a week for 8 weeks. The PD models were considered successful only when rotational times more than or equal to 7 times per minute. Eight weeks after operation, micro-perfusion was used to obtain micro-perfusate in bilateral CPU and contents of 3,4-dihydroxyphenylacetic acid (3,4-DOPAC) and homovanillic acid (HVA) were also measured. In addition, amount of tyrosine hydroxylase positive cells (TH*) in SNC was counted with immuno- histochemical staining. MAIN OUTCOME MEASURES : ① Successful rate of PD models; ② contents of dopamine and its metabolite in MFB, SNC and CPU groups and TH* amount. RESULTS: All 64 SD rats were involved in the final analysis. ③ Successful rate and rotational behavior: One week after operation, there were 6 successful models both in SNC and MFB groups; in the 2^nd week, there were 6 both in SNC and MFB groups and 1 in CPU group; in the 3^nd week, there were 1 in MFB group and 3 in CPU group; in the 4^nd week, there were 3 in CPU group. Otherwise, no successful case was found out in the next 3 weeks. Abnormal rotational behavior was not observed in control group. Four weeks after operation, successful rates were 81% (13/16) in MFB group, 75% (12/16) in SNC group and 44% (7/16) in CPU group.② Contents of 3, 4-DOPAC and HVA: Eight weeks after operation, contents in the SNC area of the injured side were lower than those on non-lesion side (P 〈 0.01).③Changes of TH+ amount: Eight weeks after operation, TH+ amount in the SNC area of the lesion side was lower than that on non-lesion side (P 〈 0.01 ). CONCLUSION: Injecting 6-OHDA into MFB, SNC and CPU can damage dopaminergic cells and establish successful PD models. 展开更多
关键词 Feasibility of establishing model of Parkinson disease by injecting 6-hydroxydopamine at different parts of the nigrostriatal pathway in the brain of rats
下载PDF
Absence of enhancement in a lesion does not preclude primary central nervous system T-cell lymphoma:A case report
16
作者 Chan-Seop Kim Chi-Hoon Choi +4 位作者 Kyung Sik Yi Yook Kim Jisun Lee Chang Gok Woo Young Hun Jeon 《World Journal of Clinical Cases》 SCIE 2024年第2期374-382,共9页
BACKGROUND Primary central nervous system lymphoma(PCNSL)is a non-Hodgkin lymphoma that originates in the central nervous system(CNS)and is exclusively limited to the CNS.Although most PCNSLs are diffuse large B-cell ... BACKGROUND Primary central nervous system lymphoma(PCNSL)is a non-Hodgkin lymphoma that originates in the central nervous system(CNS)and is exclusively limited to the CNS.Although most PCNSLs are diffuse large B-cell lymphomas,primary CNS T-cell lymphomas(PCNSTLs)are rare.PCNSTLs typically demonstrate some degree of enhancement on contrast-enhanced magnetic resonance imaging(MRI).To the best of our knowledge,non-enhancing PCNSTL has not been reported previously.CASE SUMMARY A 69-year-old male presented to the neurology department with complaints of mild cognitive impairment and gradual onset of left lower leg weakness over a span of two weeks.Initial MRI showed asymmetric T2-hyperintense lesions within the brain.No enhancement was observed on the contrast-enhanced T1 image.The initial diagnosis was neuro-Behçet’s disease.Despite high-dose steroid therapy,no alterations in the lesions were identified on initial MRI.The patient’s symptoms deteriorated further.An MRI performed one month after the initial scan revealed an increased lesion extent.Subsequently,brain biopsy confirmed the diagnosis of PCNSTL.The patient underwent definitive combined chemoradiotherapy.However,the patient developed bacteremia and died of septic shock approximately three months after diagnosis.CONCLUSION The absence of enhancement in the lesion did not rule out PCNSTL.A biopsy approach is advisable for pathological confirmation. 展开更多
关键词 Central nervous system neoplasms Non-Hodgkin Lymphoma T-cell Lymphoma Primary central nervous system lymphoma Primary central nervous system T-cell lymphoma Case report
下载PDF
Metabolic reprogramming of the inflammatory response in the nervous system:the crossover between inflammation and metabolism
17
作者 Jesus Amo-Aparicio Charles A.Dinarello Ruben Lopez-Vales 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2189-2201,共13页
Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generat... Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system. 展开更多
关键词 central nervous system fatty acid oxidation GLYCOLYSIS INFLAMMATION macrophage METABOLISM microglia NEURODEGENERATION oxidative phosphorylation
下载PDF
Annexin A1 in the nervous and ocular systems
18
作者 Aijia Wang Hong Zhang +1 位作者 Xing Li Yin Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期591-597,共7页
The therapeutic potential of Annexin A1,an important member of the Annexin superfamily,has become evident in results of experiments with multiple human systems and animal models.The anti-inflammatory and pro-resolving... The therapeutic potential of Annexin A1,an important member of the Annexin superfamily,has become evident in results of experiments with multiple human systems and animal models.The anti-inflammatory and pro-resolving effects of Annexin A1 are characteristic of pathologies involving the nervous system.In this review,we initially describe the expression sites of Annexin A1,then outline the mechanisms by which Annexin A1 maintains the neurological homeostasis through either formyl peptide receptor 2 or other molecular approaches;and,finally,we discuss the neuroregenerative potential qualities of Annexin A1.The eye and the nervous system are anatomically and functionally connected,but the association between visual system pathogenesis,especially in the retina,and Annexin A1 alterations has not been well summarized.Therefore,we explain the beneficial effects of Annexin A1 for ocular diseases,especially for retinal diseases and glaucoma on the basis of published findings,and we explore present and future delivery strategies for Annexin A1 to the retina. 展开更多
关键词 Annexin A1(ANXA1) GLAUCOMA nervous system NEUROPROTECTION NEUROREGENERATION ocular disease RETINA
下载PDF
Targeting nuclear factor erythroid 2-related factor 2-regulated ferroptosis to treat nervous system diseases
19
作者 Ye-Qi Huang Zheng-Wei Huang Xue-Juan Zhang 《World Journal of Clinical Cases》 SCIE 2024年第33期6655-6659,共5页
By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bi... By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs. 展开更多
关键词 BIBLIOMETRIC nervous system diseases Nuclear factor erythroid 2-related factor 2 Ferroptosis TARGET
下载PDF
Central nervous injury risk factors after endovascular repair of a thoracic aortic aneurysm with type B aortic dissection
20
作者 Feng Liang Jie-Qiong Su 《World Journal of Clinical Cases》 SCIE 2024年第22期4873-4880,共8页
Aortic dissection is the deadliest disease of the cardiovascular system.Type B aortic dissection accounts for 30%-60%of aortic dissections and is mainly treated by endovascular repair of thoracic endovascular aneurysm... Aortic dissection is the deadliest disease of the cardiovascular system.Type B aortic dissection accounts for 30%-60%of aortic dissections and is mainly treated by endovascular repair of thoracic endovascular aneurysm repair(TEVAR).However,patients are prone to various complications after surgery,with central nervous system injury being the most common,which seriously affects their prognosis and increases the risk of disability and death.Therefore,exploring the risk factors of central nervous system injury after TEVAR can provide a basis for its prevention and control.AIM To investigate the risk factors for central nervous system injury after the repair of a thoracic endovascular aneurysm with type B aortic dissection.METHODS We enrolled 306 patients with type B aortic dissection who underwent TEVAR at our hospital between December 2019 and October 2022.The patients were categorized into injury(n=159)and non-injury(n=147)groups based on central nervous system injury following surgery.The risk factors for central nervous system injury after TEVAR for type B aortic dissection were screened by comparing the two groups.Multivariate logistic regression analysis was performed.RESULTS The Association between age,history of hypertension,blood pH value,surgery,mechanical ventilation,intensive care unit stay,postoperative recovery times on the first day after surgery,and arterial partial pressure of oxygen on the first day after surgery differed substantially(P<0.05).Multivariate logistic regression analysis indicated that age,surgery time,history of hypertension,duration of mechanical ventilation,and intensive care unit stay were independent risk factors for central nervous system injury after TEVAR of type B aortic dissection(P<0.05).CONCLUSION For high-risk patients with central nervous system injury after TEVAR of type B aortic dissection,early intervention measures should be implemented to lower the risk of neurological discomfort following surgery in high-risk patients with central nervous system injury after TEVAR for type B aortic dissection. 展开更多
关键词 Plateau area Type B aortic dissection Thoracic endovascular aneurysm repair Central nervous system injury Risk factors
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部