期刊文献+
共找到561篇文章
< 1 2 29 >
每页显示 20 50 100
Human induced pluripotent stem cell-derived therapies for regeneration after central nervous system injury
1
作者 Stephen Vidman Yee Hang Ethan Ma +1 位作者 Nolan Fullenkamp Giles W.Plant 《Neural Regeneration Research》 SCIE CAS 2025年第11期3063-3075,共13页
In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the c... In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration. 展开更多
关键词 axon regeneration central nervous system regeneration induced pluripotent stem cells NEUROTRAUMA regenerative medicine spinal cord injury stem cell therapy
下载PDF
Multilevel analysis of the central-peripheral-target organ pathway:contributing to recovery after peripheral nerve injury
2
作者 Xizi Song Ruixin Li +6 位作者 Xiaolei Chu Qi Li Ruihua Li Qingwen Li Kai-Yu Tong Xiaosong Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS 2025年第10期2807-2822,共16页
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes... Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery. 展开更多
关键词 central nervous system central peripheral target organ multilevel pathological analysis nerve regeneration peripheral nerve injury peripheral nervous system target organs therapeutic approach
下载PDF
Liposomes as versatile agents for the management of traumatic and nontraumatic central nervous system disorders:drug stability,targeting efficiency,and safety
3
作者 Mingyu Zhang Chunyu Xiang +4 位作者 Renrui Niu Xiaodong He Wenqi Luo Wanguo Liu Rui Gu 《Neural Regeneration Research》 SCIE CAS 2025年第7期1883-1899,共17页
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these... Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis brain tumors central nervous system Huntington's disease liposome drug delivery neurological disorders Parkinson's disease spinal cord injury traumatic brain injury
下载PDF
Crosstalk among mitophagy,pyroptosis,ferroptosis,and necroptosis in central nervous system injuries 被引量:1
4
作者 Li Zhang Zhigang Hu +1 位作者 Zhenxing Li Yixing Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1660-1670,共11页
Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and... Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients. 展开更多
关键词 central nervous system injuries death pyroptosis ferroptosis inflammation MITOPHAGY NECROPTOsIs programmed cell
下载PDF
Central nervous injury risk factors after endovascular repair of a thoracic aortic aneurysm with type B aortic dissection
5
作者 Feng Liang Jie-Qiong Su 《World Journal of Clinical Cases》 SCIE 2024年第22期4873-4880,共8页
Aortic dissection is the deadliest disease of the cardiovascular system.Type B aortic dissection accounts for 30%-60%of aortic dissections and is mainly treated by endovascular repair of thoracic endovascular aneurysm... Aortic dissection is the deadliest disease of the cardiovascular system.Type B aortic dissection accounts for 30%-60%of aortic dissections and is mainly treated by endovascular repair of thoracic endovascular aneurysm repair(TEVAR).However,patients are prone to various complications after surgery,with central nervous system injury being the most common,which seriously affects their prognosis and increases the risk of disability and death.Therefore,exploring the risk factors of central nervous system injury after TEVAR can provide a basis for its prevention and control.AIM To investigate the risk factors for central nervous system injury after the repair of a thoracic endovascular aneurysm with type B aortic dissection.METHODS We enrolled 306 patients with type B aortic dissection who underwent TEVAR at our hospital between December 2019 and October 2022.The patients were categorized into injury(n=159)and non-injury(n=147)groups based on central nervous system injury following surgery.The risk factors for central nervous system injury after TEVAR for type B aortic dissection were screened by comparing the two groups.Multivariate logistic regression analysis was performed.RESULTS The Association between age,history of hypertension,blood pH value,surgery,mechanical ventilation,intensive care unit stay,postoperative recovery times on the first day after surgery,and arterial partial pressure of oxygen on the first day after surgery differed substantially(P<0.05).Multivariate logistic regression analysis indicated that age,surgery time,history of hypertension,duration of mechanical ventilation,and intensive care unit stay were independent risk factors for central nervous system injury after TEVAR of type B aortic dissection(P<0.05).CONCLUSION For high-risk patients with central nervous system injury after TEVAR of type B aortic dissection,early intervention measures should be implemented to lower the risk of neurological discomfort following surgery in high-risk patients with central nervous system injury after TEVAR for type B aortic dissection. 展开更多
关键词 Plateau area Type B aortic dissection Thoracic endovascular aneurysm repair Central nervous system injury Risk factors
下载PDF
Regulation of axonal regeneration following the central nervous system injury in adult mammalian 被引量:3
6
作者 刘冉 陈溪萍 陶陆阳 《Neuroscience Bulletin》 SCIE CAS CSCD 2008年第6期395-400,共6页
It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the i... It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals. 展开更多
关键词 central nervous system ADULT REGENERATION REGULATION brain injury
下载PDF
Advantages of nanocarriers for basic research in the field of traumatic brain injury 被引量:2
7
作者 Xingshuang Song Yizhi Zhang +1 位作者 Ziyan Tang Lina Du 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期237-245,共9页
A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researche... A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems.In this review,we summarize the epidemiology,basic pathophysiology,current clinical treatment,the establishment of models,and the evaluation indicators that are commonly used for traumatic brain injury.We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles.Nanocarriers can overcome a variety of key biological barriers,improve drug bioavailability,increase intracellular penetration and retention time,achieve drug enrichment,control drug release,and achieve brain-targeting drug delivery.However,the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic. 展开更多
关键词 blood-brain barriers brain targeting central nervous system extracellular vesicles inflammatory factor microglial cell NANOCARRIERs nanoparticles neural restoration traumatic brain injury
下载PDF
Bromocriptine protects perilesional spinal cord neurons from lipotoxicity after spinal cord injury 被引量:1
8
作者 Ying Peng Zhuoxuan Li +7 位作者 Zhiyang Zhang Yinglun Chen Renyuan Wang Nixi Xu Yuanwu Cao Chang Jiang Zixian Chen Haodong Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1142-1149,共8页
Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury ... Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway. 展开更多
关键词 BROMOCRIPTINE central nervous system cytosolic phospholipase A2 high-content screening lipid droplet lipid metabolism LIPOTOXICITY mitogen-activated protein kinase spinal cord injury spinal cord neurons
下载PDF
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury 被引量:2
9
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2s hypoxic ischemic brain injury inflammation L-CYsTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
Mild hypothermia as a treatment for central nervous system injuries Positive or negative effects? 被引量:25
10
作者 Rami Darwazeh Yi Yan 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第28期2677-2686,共10页
Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida- tive stress, excitotoxi... Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida- tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high in- tracranial pressure following traumatic brain injuries in adults. It is a new treatment that increases survival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical pro- duction, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system damage. Although a series of pathological and physiological changes as well as potential side ef- fects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study. 展开更多
关键词 neural regeneration REVIEWs brain injury spinal cord injury central nervous system injury mildhypothermia therapeutic hypothermia traumatic brain injury NEUROREGENERATION
下载PDF
Application of neurotrophic and proangiogenic factors as therapy after peripheral nervous system injury 被引量:9
11
作者 Kamilla Faritovna Idrisova Alina Kazymovna Zeinalova +9 位作者 Galina Andreevna Masgutova Alexey Andreevich Bogov Jr. Cinzia Allegrucci Valeriia Yurievna Syromiatnikova Ilnur Ildusovich Salafutdinov Ekaterna Evgenievna Garanina Dina Ivanovna Andreeva Adilet Abdullaatovich Kadyrov Albert Anatolevich Rizvanov Ruslan Faridovich Masgutov 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第6期1240-1247,共8页
The intrinsic ability of peripheral nerves to regenerate after injury is extremely limited,especially in case of severe injury.This often leads to poor motor function and permanent disability.Existing approaches for t... The intrinsic ability of peripheral nerves to regenerate after injury is extremely limited,especially in case of severe injury.This often leads to poor motor function and permanent disability.Existing approaches for the treatment of injured nerves do not provide appropriate conditions to support survival and growth of nerve cells.This drawback can be compensated by the use of gene therapy and cell therapy-based drugs that locally provide an increase in the key regulators of nerve growth,including neurotrophic factors and extracellular matrix proteins.Each growth factor plays its own specific angiotrophic or neurotrophic role.Currently,growth factors are widely studied as accelerators of nerve regeneration.Particularly noteworthy is synergy between various growth factors,that is essential for both angiogenesis and neurogenesis.Fibroblast growth factor 2 and vascular endothelial growth factor are widely known for their proangiogenic effects.At the same time,fibroblast growth factor 2 and vascular endothelial growth factor stimulate neural cell growth and play an important role in neurodegenerative diseases of the peripheral nervous system.Taken together,their neurotrophic and angiogenic properties have positive effect on the regeneration process.In this review we provide an in-depth overview of the role of fibroblast growth factor 2 and vascular endothelial growth factor in the regeneration of peripheral nerves,thus demonstrating their neurotherapeutic efficacy in improving neuron survival in the peripheral nervous system. 展开更多
关键词 fibroblast growth factor 2 growth factors nerve growth factor peripheral nerve injury peripheral nervous system vascular endothelial growth factor
下载PDF
New insights into the biological roles of immune cells in neural stem cells in post-traumatic injury of the central nervous system 被引量:3
12
作者 Ning He Xing-Jia Mao +3 位作者 Yue-Min Ding Tong Zuo Ying-Ying Chen Lin-Lin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1908-1916,共9页
Traumatic injuries in the central nervous system,such as traumatic brain injury and spinal cord injury,are associated with tissue inflammation and the infiltration of immune cells,which simultaneously affect the self-... Traumatic injuries in the central nervous system,such as traumatic brain injury and spinal cord injury,are associated with tissue inflammation and the infiltration of immune cells,which simultaneously affect the self-renewal and differentiation of neural stem cells.Howeve r,the tissue repair process instigated by endogenous neural stem cells is incapable of restoring central nervous system injuries without external intervention.Recently,resident/peripheral immune cells have been demonstrated to exert significant effects on neural stem cells.Thus,the resto ration of traumatic injuries in the central nervous system by the immune intervention in neural stem cells represents a potential therapeutic method.In this review,we discuss the roles and possible mechanisms of immune cells on the selfrenewal and differentiation of neural stem cells along with the prognosis of central nervous system injuries based on immune intervention.Finally,we discuss remaining research challenges that need to be considered in the future.Further elucidation of these challenges will fa cilitate the successful application of neural stem cells in central nervous system injuries. 展开更多
关键词 B cells central nervous system injury MACROPHAGEs MICROGLIA neural stem cells spinal cord injury T cells traumatic brain injury
下载PDF
Roles of Eph/ephrin bidirectional signaling during injury and recovery of the central nervous system 被引量:4
13
作者 Yue Wan Jin-Shan Yang +3 位作者 Li-Cai Xu Xiao-Jiang Huang Wei Wang Min-Jie Xie 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1313-1321,共9页
Multiple cellular components, including neuronal, glial and endothelial ceils, are involved in the sophis- ticated pathological processes following central nervous system injury. The pathological process cannot reduce... Multiple cellular components, including neuronal, glial and endothelial ceils, are involved in the sophis- ticated pathological processes following central nervous system injury. The pathological process cannot reduce damage or improve functional recovery by merely targeting the molecular mechanisms of neuronal cell death after central nerve system injuries. Eph receptors and ephrin ligands have drawn wide attention since the discovery of their extensive distribution and unique bidirectional signaling between astrocytes and neurons. The roles of Eph/ephrin bidirectional signaling in the developmental processes have been re- ported in previous research. Recent observations suggest that Eph/ephrin bidirectional signaling continues to be expressed in most regions and cell types in the adult central nervous system, playing diverse roles. The Eph/ephrin complex mediates neurogenesis and angiogenesis, promotes glial scar formation, regulates endocrine levels, inhibits myelin formation and aggravates inflammation and nerve pain caused by injury. ~lhe interaction between Eph and ephrin is also considered to be the key to angiogenesis. This review focus- es on the roles of Eph/ephrin bidirectional signaling in the repair of central nervous system injuries. 展开更多
关键词 nerve regeneration Eph/ephrin bidirectional signaling central nervous system injury RECOVERY NEURONs glial cells
下载PDF
Mesenchymal stem cell-derived exosomes regulate microglia phenotypes:a promising treatment for acute central nervous system injury 被引量:9
14
作者 Yu-Yan Liu Yun Li +8 位作者 Lu Wang Yan Zhao Rui Yuan Meng-Meng Yang Ying Chen Hao Zhang Fei-Hu Zhou Zhi-Rong Qian Hong-Jun Kang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1657-1665,共9页
There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progre... There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progression.In acute CNS injury,brain microglia are among the first cells to respond and play a critical role in neural repair and regeneration.However,microglial activation can also impede CNS repair and amplify tissue damage,and phenotypic transformation may be responsible for this dual role.Mesenchymal stem cell(MSC)-derived exosomes(Exos)are promising therapeutic agents for the treatment of acute CNS injuries due to their immunomodulatory and regenerative properties.MSC-Exos are nanoscale membrane vesicles that are actively released by cells and are used clinically as circulating biomarkers for disease diagnosis and prognosis.MSC-Exos can be neuroprotective in several acute CNS models,including for stroke and traumatic brain injury,showing great clinical potential.This review summarized the classification of acute CNS injury disorders and discussed the prominent role of microglial activation in acute CNS inflammation and the specific role of MSC-Exos in regulating pro-inflammatory microglia in neuroinflammatory repair following acute CNS injury.Finally,this review explored the potential mechanisms and factors associated with MSCExos in modulating the phenotypic balance of microglia,focusing on the interplay between CNS inflammation,the brain,and injury aspects,with an emphasis on potential strategies and therapeutic interventions for improving functional recovery from early CNS inflammation caused by acute CNS injury. 展开更多
关键词 acute CNs injury central nervous system inflammation exosome immune regulation mesenchymal stem cell mesenchymal stem cell-derived exosomes(MsC-Exos) microglia activation microglia phenotypic transformation molecular mechanism neuroinflammation
下载PDF
Reduction of epinephrine in the lumbar spinal cord following repetitive blast-induced traumatic brain injury in rats
15
作者 Shigeharu Tsuda Mustafa Golam +3 位作者 Jiamei Hou Kevin K.W.Wang Floyd J.Thompson Prodip Bose 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1548-1552,共5页
Traumatic brain inju ry-induced unfavorable outcomes in human patients have independently been associated with dysregulated levels of monoamines,especially epinephrine,although few preclinical studies have examined th... Traumatic brain inju ry-induced unfavorable outcomes in human patients have independently been associated with dysregulated levels of monoamines,especially epinephrine,although few preclinical studies have examined the epinephrine level in the central nervous system after traumatic brain injury.Epinephrine has been shown to regulate the activities of spinal motoneurons as well as increase the heart rate,blood pressure,and blood flow to the hindlimb muscles.Therefore,the purpose of the present study was to determine the impact of repeated blast-induced traumatic brain injury on the epinephrine levels in seve ral function-s pecific central nervous system regions in rats.Following three repeated blast injuries at 3-day intervals,the hippocampus,motor cortex,locus coeruleus,vestibular nuclei,and lumbar spinal cord were harvested at post-injury day eight and processed for epinephrine assays using a high-sensitive electrochemical detector cou pled with high-performance liquid chromatography.Our results showed that the epinephrine levels were significantly decreased in the lumbar spinal cord tissues of blast-induced traumatic brain injury animals compared to the levels detected in age-and sex-matched sham controls.In other function-specific central nervous system regions,although the epinephrine levels were slightly altered following blast-induced tra u matic brain injury,they were not statistically significant.These results suggest that blast injury-induced significant downregulation of epinephrine in the lumbar spinal cord could negatively impact the motor and cardiovascular function.This is the first repo rt to show altered epinephrine levels in the spinal cord following repetitive mild blast-induced traumatic brain injury. 展开更多
关键词 balance blood flow cardiovascular system central nervous system EPINEPHRINE ischemic damage lumbar spinal cord muscle tone repeated blast sPAsTICITY traumatic brain injury
下载PDF
In vivo imaging of the neuronal response to spinal cord injury:a narrative review
16
作者 Junhao Deng Chang Sun +5 位作者 Ying Zheng Jianpeng Gao Xiang Cui Yu Wang Licheng Zhang Peifu Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期811-817,共7页
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are ... Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging. 展开更多
关键词 anterior horn neurons calcium imaging central nervous system dorsal horn neurons dorsal root ganglion in vivo imaging neuronal response spinal cord injury spinal cord two-photon microscopy
下载PDF
Epigallocatechin-3-gallate treatment to promote neuroprotection and functional recovery after nervous system injury 被引量:2
17
作者 Pere Boadas-Vaello Enrique Verdú 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1390-1392,共3页
Traumatic spinal cord injury (SCI) causes motor paralysis, sensory anesthesia and autonomic dysfunction below the le- sion site and additionally some SCI patients refer neuropathic pain together with these signs and... Traumatic spinal cord injury (SCI) causes motor paralysis, sensory anesthesia and autonomic dysfunction below the le- sion site and additionally some SCI patients refer neuropathic pain together with these signs and symptoms. Clinical and experimental studies have revealed the main pathological changes of injured spinal cord implicated in all these signs and symptoms, including neuropathic pain. After few hours of traumatic SCI, it is usual to observe broken blood brain barrier with plasma and blood cells extravasation, cell necrosis, disruption of ascending and descending spinal cord pathways and increased potassium and glutamate. Glutamate contributes to excitotoxicity of neurons whereas potassium facilitates ectopic depolarization of survival neurons and activation of resident microglia. 展开更多
关键词 EGCG JAK sTAT NF Epigallocatechin-3-gallate treatment to promote neuroprotection and functional recovery after nervous system injury sCI
下载PDF
Distribution of paired immunoglobulin-like receptor B in the nervous system related to regeneration difficulties after unilateral lumbar spinal cord injury 被引量:3
18
作者 Wan-shu Peng Chao Qi +4 位作者 Hong Zhang Mei-ling Gao Hong Wang Fei Ren Xia-qing Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1139-1146,共8页
Paired immunoglobulin-like receptor B(Pir B) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regenera... Paired immunoglobulin-like receptor B(Pir B) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regeneration. The regulatory effect of Pir B on injured nerves has received a lot of attention. To better understand nerve regeneration inability after spinal cord injury, this study aimed to investigate the distribution of Pir B(via immunofluorescence) in the central nervous system and peripheral nervous system 10 days after injury. Immunoreactivity for Pir B increased in the dorsal root ganglia, sciatic nerves, and spinal cord segments. In the dorsal root ganglia and sciatic nerves, Pir B was mainly distributed along neuronal and axonal membranes. Pir B was found to exhibit a diffuse, intricate distribution in the dorsal and ventral regions. Immunoreactivity for Pir B was enhanced in some cortical neurons located in the bilateral precentral gyri. Overall, the findings suggest a pattern of Pir B immunoreactivity in the nervous system after unilateral spinal transection injury, and also indicate that Pir B may suppress repair after injury. 展开更多
关键词 nerve regeneration paired immunoglobulin-like receptor B myelin inhibitory factor spinal cord injury peripheral nervous system central nervous system cerebral cortex dorsal root ganglion neural regeneration
下载PDF
Self-assembling peptide nanofibrous hydrogel as a promising strategy in nerve repair after traumatic injury in the nervous system 被引量:1
19
作者 Na Zhang Liumin He Wutian Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第5期717-718,共2页
Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.T... Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.The proliferation of a large number of astrocytes results in the formation of glial scar. 展开更多
关键词 NsCs self-assembling peptide nanofibrous hydrogel as a promising strategy in nerve repair after traumatic injury in the nervous system RGD
下载PDF
Bruton’s tyrosine kinase inhibitors in primary central nervous system lymphoma:New hopes on the horizon
20
作者 Leonardo S Lino-Silva Sabrina B Martínez-Villavicencio Luisa Fernanda Rivera-Moncada 《World Journal of Clinical Oncology》 2024年第5期587-590,共4页
In this editorial,we comment on the article by Wang et al.This manuscript explores the potential synergistic effects of combining zanubrutinib,a novel oral inhibitor of Bruton’s tyrosine kinase,with high-dose methotr... In this editorial,we comment on the article by Wang et al.This manuscript explores the potential synergistic effects of combining zanubrutinib,a novel oral inhibitor of Bruton’s tyrosine kinase,with high-dose methotrexate(HD-MTX)as a therapeutic intervention for primary central nervous system lymphoma(PCNSL).The study involves a retrospective analysis of 19 PCNSL patients,highlighting clinicopathological characteristics,treatment outcomes,and genomic biomarkers.The results indicate the combination’s good tolerance and strong antitumor activity,with an 84.2%overall response rate.The authors emphasize the potential of zanubrutinib to modulate key genomic features of PCNSL,particularly mutations in myeloid differentiation primary response 88 and cluster of differentiation 79B.Furthermore,the study investigates the role of circulating tumor DNA in cerebrospinal fluid for disease surveillance and treatment response monitoring.In essence,the study provides valuable insights into the potential of combining zanubrutinib with HD-MTX as a frontline therapeutic regimen for PCNSL.The findings underscore the importance of exploring alternative treatment modalities and monitoring genomic and liquid biopsy markers to optimize patient outcomes.While the findings suggest promise,the study’s limitations should be considered,and further research is needed to establish the clinical relevance of this therapeutic approach for PCNSL. 展开更多
关键词 Primary central nervous system lymphoma Zanubrutinib Bruton’s tyrosine kinase PROGNOsIs Myeloid differentiation primary response 88 gene Cluster of differentiation 79B gene
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部