强化学习用于序列决策问题上取得的成功越来越受到人们的重视,但是当使用高维状态作为输入时,仍然存在数据效率低下的问题。造成这个问题的原因之一是智能体难以从高维空间提取有效的特征。为了提高数据效率,论文提出一种适用于强化学...强化学习用于序列决策问题上取得的成功越来越受到人们的重视,但是当使用高维状态作为输入时,仍然存在数据效率低下的问题。造成这个问题的原因之一是智能体难以从高维空间提取有效的特征。为了提高数据效率,论文提出一种适用于强化学习任务的数据增强方法cGDA(cGANs-based Data Augment),该方法用条件生成对抗网络(cGANs)对环境的动态特性建模,以当前时刻的状态和动作作为条件生成模型的输入,输出下一时刻的状态作为增强数据。训练过程中使用真实数据和增强数据同时训练智能体,有效地帮助智能体从不同的数据中快速提取到有用的知识。在Atari100K基准上,cGDA在26个离散控制问题环境中与采用数据增强的方法比较,在16个环境中获得了更高的性能;与未采用数据增强的方法比较,在14个环境中获得了更高的性能。展开更多
文摘强化学习用于序列决策问题上取得的成功越来越受到人们的重视,但是当使用高维状态作为输入时,仍然存在数据效率低下的问题。造成这个问题的原因之一是智能体难以从高维空间提取有效的特征。为了提高数据效率,论文提出一种适用于强化学习任务的数据增强方法cGDA(cGANs-based Data Augment),该方法用条件生成对抗网络(cGANs)对环境的动态特性建模,以当前时刻的状态和动作作为条件生成模型的输入,输出下一时刻的状态作为增强数据。训练过程中使用真实数据和增强数据同时训练智能体,有效地帮助智能体从不同的数据中快速提取到有用的知识。在Atari100K基准上,cGDA在26个离散控制问题环境中与采用数据增强的方法比较,在16个环境中获得了更高的性能;与未采用数据增强的方法比较,在14个环境中获得了更高的性能。