It is reported that laser-processing is effective to repair the heat checks, which are fine shallow cracks on a surfaceof die-casting dies. In this study, the rotating bending fatigue tests have been carried out to ev...It is reported that laser-processing is effective to repair the heat checks, which are fine shallow cracks on a surfaceof die-casting dies. In this study, the rotating bending fatigue tests have been carried out to evaluate the fatiguecharacteristics of laser-processed hot working tool steel. Because test results are scattered, S-N curves are decidedbased on the evaluation of fatigue strength distribution. As a result, the fatigue strength of the laser-processedspecimens decreases remarkably in comparison with that of base metal. However, it can be recovered to almostinitial value by heat treatment at secondary hardening temperature. This procedure is also effective to decrease thescatter of fatigue strength. The laser-processing can be carried out at low cost and this method is effective for theextension of the work life of dies.展开更多
The mission reliability assessment plays a great role in logistics planning and supporting resource optimization of complex system.But the current problem,which is difficult to solve,is how to model and analyze the ch...The mission reliability assessment plays a great role in logistics planning and supporting resource optimization of complex system.But the current problem,which is difficult to solve,is how to model and analyze the characters of system reliability under the complex mission profile.In order to solve the problem,an agentbased simulation method was used to assess reliability for complex systems with various random working conditions.A multi-working condition simulation agent(MA)was designed and used to simulate the random transferring process of working conditions of system,and it cooperated with system simulation agents(SAs)and unit simulation agents(UAs)to realize system mission reliability(MR)simulation.Through simulation experiments,effect of multiple working conditions mission on the reliability of system was analyzed by comparing with the basic reliability condition.Feasibility and efficiency of the method were proved through simulation experiments of the case system.The research result provides a viable and useful method and a solution for MR analysis and assessment of complex systems in multi-working conditions,which can help to evaluate the reliability of operating system orienting to the practical mission and environment,and it is meaningful for the reliability analysis and the design of complex systems.展开更多
A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function re...A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function related to order and background value is established.Taking the average relative error function as the objective function,the optimal value of the two parameters is obtained through the optimization method,and the minimum value of the average relative error is determined.The calculation example shows that this method can greatly improve the accuracy of the model and more accurately reflect the relationship between torpedo loading and working reliabilities compared with the traditional GM(1,2)model.展开更多
快脉冲直线型变压器驱动源(fast linear transformer driver,FLTD)是建设下一代大型Z箍缩装置最有前景的技术路线之一。大型FLTD脉冲源中数以万计气体开关的可靠运行是提高Z箍缩装置可靠性的重要因素。该文基于15 MAZ箍缩科学实验装置的...快脉冲直线型变压器驱动源(fast linear transformer driver,FLTD)是建设下一代大型Z箍缩装置最有前景的技术路线之一。大型FLTD脉冲源中数以万计气体开关的可靠运行是提高Z箍缩装置可靠性的重要因素。该文基于15 MAZ箍缩科学实验装置的FLTD脉冲源设计,采用Monte-Carlo方法建立考虑支路开关自放电及其载荷共享效应的FLTD脉冲源可靠性计算模型,分析开关故障模式及其触发策略对脉冲源可靠性的影响。结果表明,主支路开关自放电产生的故障电压会引起开关级联自放电,降低装置可靠性。若主支路开关工作系数设定在0.5~0.7范围内,FLTD脉冲源故障率可低于1×10^(-4)。此外,触发器及触发支路开关的高可靠性对于提升脉冲源可靠性至关重要,增加触发器脉冲数量、降低触发器自放电故障率能够有效提升脉冲源可靠性,当触发器脉冲数量提升至4倍后,FLTD脉冲源故障率有望降低至1×10^(-5)以下。研究结果为大型FLTD脉冲源的开关工作系数及触发策略的选取提供参考,具有重要的工程应用价值。展开更多
Combined with current specifications and stress characteristics of concrete filled steel tubular (CFST) arch bridges, the determination principle of safe-middle-failure threestage mode is given. Accordingly, damage ...Combined with current specifications and stress characteristics of concrete filled steel tubular (CFST) arch bridges, the determination principle of safe-middle-failure threestage mode is given. Accordingly, damage probability and failure probability and the corresponding reliability indices are calculated; a direct relationship between reliability indices and three-stage working status is made. Based on the three-stage working mode, a combined FNM (finite element-neural network- Monte-Carlo simulation) method is put forward to estimate the reliability of existing bridges. According to time-dependent reliability theory, subsequent service time is divided into several stages; minimum samples required by the Monte-Carlo method are generated by random sampling; training samples are calculated by the finite element method, and the training samples are extended by the neural network; failure probability and damage probability are calculated by the Monte-Carlo method. Thus, time dependent reliability indices are obtained, and the working status is judged. A case study is investigated to estimate the reliability of an actual bridge by the FNM method. The bridge is a CFST arch bridge with an 83.6 m span and it has been in operation for 10 years. According to analysis results, in the tenth year, the example bridge is still in safe status. This conclusion is consistent with the facts, which proves the feasibility of the FNM method for estimating the reliability of existing bridges.展开更多
The US Department of Defense (DoD) routinely uses wireless sensor networks (WSNs) for military tactical communications. Sensor node die-out has a significant impact on the topology of a tactical WSN. This is probl...The US Department of Defense (DoD) routinely uses wireless sensor networks (WSNs) for military tactical communications. Sensor node die-out has a significant impact on the topology of a tactical WSN. This is problematic for military applications where situational data is critical to tactical decision making. To increase the amount of time all sensor nodes remain active within the network and to control the network topology tactically, energy efficient routing mechanisms must be employed. In this paper, we aim to provide realistic insights on the practical advantages and disadvantages of using established routing techniques for tactical WSNs. We investigate the following established routing algorithms: direct routing, minimum transmission energy (MTE), Low Energy Adaptive Cluster Head routing (LEACH), and zone clustering. Based on the node die out statistics observed with these algorithms and the topological impact the node die outs have on the network, we develop a novel, energy efficient zone clustering algorithm called EZone. Via extensive simulations using MATLAB, we analyze the effectiveness of these algorithms on network performance for single and multiple gateway scenarios and show that the EZone algorithm tactically controls the topology of the network, thereby maintaining significant service area coverage when compared to the other routing algorithms.展开更多
A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com- pensate for the fiber optic gyro (FOG) bias drift caused by temperature. In the network, FOG tempe...A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com- pensate for the fiber optic gyro (FOG) bias drift caused by temperature. In the network, FOG temperature and its gradient are set as input and the FOG bias drift is set as the expected output. A 2-5-1 network trained with IUKF algorithm is established. The IUKF algorithm is developed on the basis of the unscented Kalman filter (UKF). The weight and bias vectors of the hidden layer are set as the state of the UKF and its process and measurement equations are deduced according to the network architecture. To solve the unavoidable estimation deviation of the mean and covariance of the states in the UKF algorithm, iterative computation is introduced into the UKF after the measurement update. While the measure- ment noise R is extended into the state vectors before iteration in order to meet the statistic orthogonality of estimate and mea- surement noise. The IUKF algorithm can provide the optimized estimation for the neural network because of its state expansion and iteration. Temperature rise (-20-20℃) and drop (70-20℃) tests for FOG are carried out in an attemperator. The temperature drift model is built with neural network, and it is trained respectively with BP, UKF and IUKF algorithms. The results prove that the proposed model has higher precision compared with the back- propagation (BP) and UKF network models.展开更多
A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method ...A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method facilitates the synthesis of polydiphenysilylenemethyle (PDPhSM) thin film, which is difficult to make by conventional methods because of its insolubility and high melting point. TPDC was first evaporated on silicon substrates and then exposed to metal nanoparticles deposition by pulsed laser ablation prior to heat treatment.The TPDC films with metal nanoparticles were heated in an electric furnace in air atmosphere to induce ring-opening polymerization of TPDC. The film thicknesses before and after polymerization were measured by a stylus profilometer. Since the polymerization process competes with re-evaporation of TPDC during the heating, the thickness ratio of the polymer to the monomer was defined as the polymerization efficiency, which depends greatly on the technology conditions. Therefore, a well trained radial base function neural network model was constructed to approach the complex nonlinear relationship. Moreover, a particle swarm algorithm was firstly introduced to search for an optimum technology directly from RBF neural network model. This ensures that the fabrication of thin film with appropriate properties using pulsed laser ablation requires no in-depth understanding of the entire behavior of the technology conditions.展开更多
文摘It is reported that laser-processing is effective to repair the heat checks, which are fine shallow cracks on a surfaceof die-casting dies. In this study, the rotating bending fatigue tests have been carried out to evaluate the fatiguecharacteristics of laser-processed hot working tool steel. Because test results are scattered, S-N curves are decidedbased on the evaluation of fatigue strength distribution. As a result, the fatigue strength of the laser-processedspecimens decreases remarkably in comparison with that of base metal. However, it can be recovered to almostinitial value by heat treatment at secondary hardening temperature. This procedure is also effective to decrease thescatter of fatigue strength. The laser-processing can be carried out at low cost and this method is effective for theextension of the work life of dies.
文摘The mission reliability assessment plays a great role in logistics planning and supporting resource optimization of complex system.But the current problem,which is difficult to solve,is how to model and analyze the characters of system reliability under the complex mission profile.In order to solve the problem,an agentbased simulation method was used to assess reliability for complex systems with various random working conditions.A multi-working condition simulation agent(MA)was designed and used to simulate the random transferring process of working conditions of system,and it cooperated with system simulation agents(SAs)and unit simulation agents(UAs)to realize system mission reliability(MR)simulation.Through simulation experiments,effect of multiple working conditions mission on the reliability of system was analyzed by comparing with the basic reliability condition.Feasibility and efficiency of the method were proved through simulation experiments of the case system.The research result provides a viable and useful method and a solution for MR analysis and assessment of complex systems in multi-working conditions,which can help to evaluate the reliability of operating system orienting to the practical mission and environment,and it is meaningful for the reliability analysis and the design of complex systems.
文摘A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function related to order and background value is established.Taking the average relative error function as the objective function,the optimal value of the two parameters is obtained through the optimization method,and the minimum value of the average relative error is determined.The calculation example shows that this method can greatly improve the accuracy of the model and more accurately reflect the relationship between torpedo loading and working reliabilities compared with the traditional GM(1,2)model.
文摘快脉冲直线型变压器驱动源(fast linear transformer driver,FLTD)是建设下一代大型Z箍缩装置最有前景的技术路线之一。大型FLTD脉冲源中数以万计气体开关的可靠运行是提高Z箍缩装置可靠性的重要因素。该文基于15 MAZ箍缩科学实验装置的FLTD脉冲源设计,采用Monte-Carlo方法建立考虑支路开关自放电及其载荷共享效应的FLTD脉冲源可靠性计算模型,分析开关故障模式及其触发策略对脉冲源可靠性的影响。结果表明,主支路开关自放电产生的故障电压会引起开关级联自放电,降低装置可靠性。若主支路开关工作系数设定在0.5~0.7范围内,FLTD脉冲源故障率可低于1×10^(-4)。此外,触发器及触发支路开关的高可靠性对于提升脉冲源可靠性至关重要,增加触发器脉冲数量、降低触发器自放电故障率能够有效提升脉冲源可靠性,当触发器脉冲数量提升至4倍后,FLTD脉冲源故障率有望降低至1×10^(-5)以下。研究结果为大型FLTD脉冲源的开关工作系数及触发策略的选取提供参考,具有重要的工程应用价值。
基金The National Natural Science Foundation of China(No.10672060)
文摘Combined with current specifications and stress characteristics of concrete filled steel tubular (CFST) arch bridges, the determination principle of safe-middle-failure threestage mode is given. Accordingly, damage probability and failure probability and the corresponding reliability indices are calculated; a direct relationship between reliability indices and three-stage working status is made. Based on the three-stage working mode, a combined FNM (finite element-neural network- Monte-Carlo simulation) method is put forward to estimate the reliability of existing bridges. According to time-dependent reliability theory, subsequent service time is divided into several stages; minimum samples required by the Monte-Carlo method are generated by random sampling; training samples are calculated by the finite element method, and the training samples are extended by the neural network; failure probability and damage probability are calculated by the Monte-Carlo method. Thus, time dependent reliability indices are obtained, and the working status is judged. A case study is investigated to estimate the reliability of an actual bridge by the FNM method. The bridge is a CFST arch bridge with an 83.6 m span and it has been in operation for 10 years. According to analysis results, in the tenth year, the example bridge is still in safe status. This conclusion is consistent with the facts, which proves the feasibility of the FNM method for estimating the reliability of existing bridges.
文摘The US Department of Defense (DoD) routinely uses wireless sensor networks (WSNs) for military tactical communications. Sensor node die-out has a significant impact on the topology of a tactical WSN. This is problematic for military applications where situational data is critical to tactical decision making. To increase the amount of time all sensor nodes remain active within the network and to control the network topology tactically, energy efficient routing mechanisms must be employed. In this paper, we aim to provide realistic insights on the practical advantages and disadvantages of using established routing techniques for tactical WSNs. We investigate the following established routing algorithms: direct routing, minimum transmission energy (MTE), Low Energy Adaptive Cluster Head routing (LEACH), and zone clustering. Based on the node die out statistics observed with these algorithms and the topological impact the node die outs have on the network, we develop a novel, energy efficient zone clustering algorithm called EZone. Via extensive simulations using MATLAB, we analyze the effectiveness of these algorithms on network performance for single and multiple gateway scenarios and show that the EZone algorithm tactically controls the topology of the network, thereby maintaining significant service area coverage when compared to the other routing algorithms.
基金supported by the National Natural Science Foundation of China(6110418440904018)+3 种基金the National Key Scientific Instrument and Equipment Development Project(2011YQ12004502)the Research Foundation of General Armament Department(201300000008)the Doctor Innovation Fund of Naval University of Engineering(HGBSCXJJ2011008)the Youth Natural Science Foundation of Naval University of Engineering(HGDQNJJ12028)
文摘A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com- pensate for the fiber optic gyro (FOG) bias drift caused by temperature. In the network, FOG temperature and its gradient are set as input and the FOG bias drift is set as the expected output. A 2-5-1 network trained with IUKF algorithm is established. The IUKF algorithm is developed on the basis of the unscented Kalman filter (UKF). The weight and bias vectors of the hidden layer are set as the state of the UKF and its process and measurement equations are deduced according to the network architecture. To solve the unavoidable estimation deviation of the mean and covariance of the states in the UKF algorithm, iterative computation is introduced into the UKF after the measurement update. While the measure- ment noise R is extended into the state vectors before iteration in order to meet the statistic orthogonality of estimate and mea- surement noise. The IUKF algorithm can provide the optimized estimation for the neural network because of its state expansion and iteration. Temperature rise (-20-20℃) and drop (70-20℃) tests for FOG are carried out in an attemperator. The temperature drift model is built with neural network, and it is trained respectively with BP, UKF and IUKF algorithms. The results prove that the proposed model has higher precision compared with the back- propagation (BP) and UKF network models.
基金Funded by the Zhejiang Provincial Natural Science Foundation of China(No.R405031)Jiaxing Science Planning Project(2009 2007)the Educa-tion Department of Zhejiang Province (No.20051441)
文摘A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method facilitates the synthesis of polydiphenysilylenemethyle (PDPhSM) thin film, which is difficult to make by conventional methods because of its insolubility and high melting point. TPDC was first evaporated on silicon substrates and then exposed to metal nanoparticles deposition by pulsed laser ablation prior to heat treatment.The TPDC films with metal nanoparticles were heated in an electric furnace in air atmosphere to induce ring-opening polymerization of TPDC. The film thicknesses before and after polymerization were measured by a stylus profilometer. Since the polymerization process competes with re-evaporation of TPDC during the heating, the thickness ratio of the polymer to the monomer was defined as the polymerization efficiency, which depends greatly on the technology conditions. Therefore, a well trained radial base function neural network model was constructed to approach the complex nonlinear relationship. Moreover, a particle swarm algorithm was firstly introduced to search for an optimum technology directly from RBF neural network model. This ensures that the fabrication of thin film with appropriate properties using pulsed laser ablation requires no in-depth understanding of the entire behavior of the technology conditions.