期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
核动力系统模拟技术的研究 被引量:4
1
作者 高祖瑛 张作义 董玉杰 《核动力工程》 EI CAS CSCD 北大核心 1998年第2期178-183,共6页
简要回顾了清华大学核研院在系统模拟技术方面所开展的主要工作,重点介绍了基于RETRAN02程序研究开发的200MW核供热堆紧凑型模拟器和基于网络计算技术开发的10MW高温气冷堆网络并行模拟原型系统。
关键词 模拟技术 核供热堆 高温气冷堆 程序 网络计算
下载PDF
UV/H_2O_2降解微囊藻毒素的人工神经网络模型 被引量:1
2
作者 王文清 高乃云 黎雷 《给水排水》 CSCD 北大核心 2009年第11期112-116,共5页
试验建立了UV/H2O2高级氧化工艺降解微囊藻毒素MC-LR的人工神经网络模型。研究了UV强度、H2O2投加量、MC-LR初始浓度、pH等对降解速率的影响,并以反向传播算法的神经网络模型对多因素条件下的降解效果进行仿真预测。结果表明,降解速率... 试验建立了UV/H2O2高级氧化工艺降解微囊藻毒素MC-LR的人工神经网络模型。研究了UV强度、H2O2投加量、MC-LR初始浓度、pH等对降解速率的影响,并以反向传播算法的神经网络模型对多因素条件下的降解效果进行仿真预测。结果表明,降解速率不受初始MC-LR浓度的影响;UV的加强及H2O2投加量的增加能有效提高MC-LR的降解速率;pH的降低能大幅度改善降解效果,尤其在酸性条件下,pH的变化对降解速率的影响程度更大。 展开更多
关键词 微囊藻毒素 UV/H2O2 人工神经网络 模型 动力学
下载PDF
基于ENC28J60的网络型数据采集器设计 被引量:3
3
作者 李玉峰 陈海军 董兰飞 《橡塑技术与装备》 CAS 2014年第6期51-54,共4页
设计了全新的数据采集器。利用基于ENC28J60的网络型数据采集器,采用INTERNET和RS485相结合的技术,利用RSA485总线采集温度、压力、电力仪表的数据,然后通过Internet所相关数据传输到上位机,实现了对企业内容各类仪表数据的集中监控管理。
关键词 数据采集器 网络 硬件 RS485 通讯 存储
下载PDF
华轮110KV输变电站综合自动化系统
4
作者 叶德养 《橡塑技术与装备》 CAS 2002年第6期54-56,共3页
为了解决华南橡胶轮胎有限公司原来多条10kV供电系统较混乱的局面,决定兴建110kV输变电站,一次电路按常规无人值班方式设计,二次电路采用全新综合自动化系统,取消了传统方式中如信号屏、控制屏等设备,增加了很多自动控制功能。实践证明... 为了解决华南橡胶轮胎有限公司原来多条10kV供电系统较混乱的局面,决定兴建110kV输变电站,一次电路按常规无人值班方式设计,二次电路采用全新综合自动化系统,取消了传统方式中如信号屏、控制屏等设备,增加了很多自动控制功能。实践证明此项设计方案造价低、设备可靠性高,提高了供电质量。 展开更多
关键词 110KV输变电站 综合自动化系统 开关柜 断路器 保护装置 监控 网络
下载PDF
基于WorldView-02高分影像的BP和RBF神经网络遥感水深反演 被引量:13
5
作者 郑贵洲 乐校冬 +1 位作者 王红平 花卫华 《地球科学》 EI CAS CSCD 北大核心 2017年第12期2345-2353,共9页
遥感水深反演是水深测量的一种重要技术和手段.以美济礁水深反演为例,选择WorldView-02高分影像为数据源,在辐射定标和大气校正的基础上,构建BP(Back Propagation)和RBF(Radial Basis Function)人工神经网络水深反演模型,以遥感影像8个... 遥感水深反演是水深测量的一种重要技术和手段.以美济礁水深反演为例,选择WorldView-02高分影像为数据源,在辐射定标和大气校正的基础上,构建BP(Back Propagation)和RBF(Radial Basis Function)人工神经网络水深反演模型,以遥感影像8个波段为输入层,通过tansig、logsig、高斯函数和purelin函数变换实现从输入层到隐含层、隐含层到输出层的转换,以便反演水深.最后对反演水深与实测水深采用回归分析,求解决定系数(coefficient of determination,R2)、平均决定误差(Mean Absolute Error,MAE)、均方根误差(Root Mean Square Error,RMSE)等进行比较,评价2种模型的精度.结果表明,RBF神经网络模型结构更简单,对样本要求更低,反演精度达到0.995,更适合遥感水深反演. 展开更多
关键词 遥感 WorldView-02 水深反演 BP神经网络 RBF神经网络
原文传递
SO2 Emission Characteristics and BP Neural Networks Prediction in MSW/Coal Co-Fired Fluidized Beds 被引量:3
6
作者 Junming WEN Jianhua YAN +3 位作者 Dongping ZHANG Yong CHI Mingjiang NI Kefa CEN 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第3期281-288,共8页
The SO2 emission characteristics of typical Msw components and their mixtures have been investigated in a φ150mm fluidized bed. Some influencing factors of SO2 emission in MSW fluidized bed incinerator were found out... The SO2 emission characteristics of typical Msw components and their mixtures have been investigated in a φ150mm fluidized bed. Some influencing factors of SO2 emission in MSW fluidized bed incinerator were found out in this study. The SO2 emission is increasing with the growth of the bed temperature, and it is rising with the increasing oxygen concentration at furnace exit. When the weight percentage of auxiliary coal is being raised, the conversion rate of S to SO2 is largely going up. The SO2 emission decreases if the desulfurizing agent (CaCO3) is added during the incineration process, but the desulfurizing efficiency is weakened with the enhancement of the bed temperature. The fuel moisture content has a slight effect on the SO2 emission. Based on these experimental results, a 12 × 6 × 1 three-layer BP neural networks prediction model of SO2 emission in MSW/coal co-fired fluidized bed incinerator was built. The prediction results of this model give good agreement with the experimental results, which indicates that the model has relatively high accuracy and good generalization ability. It was found that BP neural network is an effectual method used to predict the SO2 emission of MSW/coal co-fired fluidized bed incinerator. 展开更多
关键词 municipal solid waste (MSW) S02 emission fluidized bed BP neural networks prediction model.
原文传递
Computer-aided Prediction of the ZrO_2 Nanoparticles' Effects on Tensile Strength and Percentage of Water Absorption of Concrete Specimens 被引量:1
7
作者 Ali Nazari Shadi Riahi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第1期83-96,共14页
In the present paper, two models based on artificial neural networks and genetic programming for predicting split tensile strength and percentage of water absorption of concretes containing ZrO2 nanoparticles have bee... In the present paper, two models based on artificial neural networks and genetic programming for predicting split tensile strength and percentage of water absorption of concretes containing ZrO2 nanoparticles have been developed at different ages of curing. For building these models, training and testing using experimental results for 144 specimens produced with 16 different mixture proportions were conducted. The data used in the multilayer feed forward neural networks models and input variables of genetic programming models were arranged in a format of eight input parameters that cover the cement content, nanoparticle content, aggregate type, water content, the amount of superplasticizer, the type of curing medium, age of curing and number of testing try. According to these input parameters, in the neural networks and genetic programming models, the split tensile strength and percentage of water absorption values of concretes containing ZrO2 nanoparticles were predicted. The training and testing results in the neural network and genetic programming models have shown that two models have strong potential for predicting the split tensile strength and percentage of water absorption values of concretes containing ZrO2 nanoparticles. It has been found that neural network (NN) and gene expression programming (GEP) models will be valid within the ranges of variables. In neural networks model, as the training and testing ended when minimum error norm of network gained, the best results were obtained and in genetic programming model, when 4 genes were selected to construct the model, the best results were acquired. Although neural network have predicted better results, genetic programming is able to predict reasonable values with a simpler method rather than neural network. 展开更多
关键词 Concrete Curing medium Zr02 nanoparticles Artificial neural network Geneticprogramming Split tensile strength Percentage of water absorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部