In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehen...In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.展开更多
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D...Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.展开更多
In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signal...In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.展开更多
With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes ...With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.展开更多
The ever-increasing needs of Internet of Things networks (IoTn) present considerable issues in computing complexity, security, trust, and authentication, among others. This gets increasingly more challenging as techno...The ever-increasing needs of Internet of Things networks (IoTn) present considerable issues in computing complexity, security, trust, and authentication, among others. This gets increasingly more challenging as technology advances, and its use expands. As a consequence, boosting the capacity of these networks has garnered widespread attention. As a result, 5G, the next phase of cellular networks, is expected to be a game-changer, bringing with it faster data transmission rates, more capacity, improved service quality, and reduced latency. However, 5G networks continue to confront difficulties in establishing pervasive and dependable connections amongst high-speed IoT devices. Thus, to address the shortcomings in current recommendations, we present a unified architecture based on software-defined networks (SDNs) that provides 5G-enabled devices that must have complete secrecy. Through SDN, the architecture streamlines network administration while optimizing network communications. A mutual authentication protocol using elliptic curve cryptography is introduced for mutual authentication across certificate authorities and clustered heads in IoT network deployments based on IoT. Again, a dimensionality reduction intrusion detection mechanism is introduced to decrease computational cost and identify possible network breaches. However, to leverage the method’s potential, the initial module's security is reviewed. The second module is evaluated and compared to modern models.展开更多
The development trend of PLC is that the functions are more, the integration level is greater and the network function is greater. Nowadays, the manufacturers of PLC develop there own network. PLC technique has two de...The development trend of PLC is that the functions are more, the integration level is greater and the network function is greater. Nowadays, the manufacturers of PLC develop there own network. PLC technique has two development trends. On one hand, PLC network system is not a self-contained closed system any longer and develops towards open system. Various PLC not only has distinctive PLC network systems and completes device control task, but also network with the superior computer management system to realize information exchange, which makes it become one part of information management system. On the other hand, the field-bus technique is widely applied. PLC is connected with the intelligent equipments installed on site such as intelligent instrument, sensor, intelligent solenoid valve, intelligent drive actuator by a transmission media ( such as twisted pair, coaxial cable and cable), and they transmit information mutually according to the same communication protocol, which can form a field industrial control network. Compared with single PLC remote network, the network not only has the advantages of flexible configurations, easy expansion, low cost and higher cost perfomaance, but also has opening significance.展开更多
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route...In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.展开更多
Benefit from the enhanced onboard processing capacities and high-speed satellite-terrestrial links,satellite edge computing has been regarded as a promising technique to facilitate the execution of the computation-int...Benefit from the enhanced onboard processing capacities and high-speed satellite-terrestrial links,satellite edge computing has been regarded as a promising technique to facilitate the execution of the computation-intensive applications for satellite communication networks(SCNs).By deploying edge computing servers in satellite and gateway stations,SCNs can achieve significant performance gains of the computing capacities at the expense of extending the dimensions and complexity of resource management.Therefore,in this paper,we investigate the joint computing and communication resource management problem for SCNs to minimize the execution latency of the computation-intensive applications,while two different satellite edge computing scenarios and local execution are considered.Furthermore,the joint computing and communication resource allocation problem for the computation-intensive services is formulated as a mixed-integer programming problem.A game-theoretic and many-to-one matching theorybased scheme(JCCRA-GM)is proposed to achieve an approximate optimal solution.Numerical results show that the proposed method with low complexity can achieve almost the same weight-sum latency as the Brute-force method.展开更多
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks ...Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.展开更多
In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high dow...In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.展开更多
The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a c...The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a certain model with certain regularity,the FH frequency is thus predictable.In this paper,we investigate the FH frequency reconnais-sance and prediction of a non-cooperative communi-cation network by effective FH signal detection,time-frequency(TF)analysis,wavelet detection and fre-quency estimation.With the intercepted massive FH signal data,long short-term memory(LSTM)neural network model is constructed for FH frequency pre-diction.Simulation results show that our parameter es-timation methods could estimate frequency accurately in the presence of certain noise.Moreover,the LSTM-based scheme can effectively predict FH frequency and frequency interval.展开更多
As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerou...As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications.展开更多
This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication...This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication and cannot simply be attributed to security issues,therefore the basic and importance of trust management in quantum communication networks should be taken more seriously.Compared with other theories and techniques in quantum communication,the trust of quantum communication and trust management model in quantum communication network environment is still in its initial stage.In this paper,the core technologies of establishing secure and reliable quantum communication networks are categorized and summarized,and the trends of each direction in trust management of quantum communication network are discussed in depth.展开更多
In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage r...In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage regions of access points(APs)shared by slices,device to device(D2D)communication can occur among different slices,i.e.,one device acts as D2D relay for another device serving by a different slice,which is defined as slice cooperation in this paper.Since selfish slices will not help other slices by cooperation voluntarily and unconditionally,this paper designs a novel resource allocation scheme to stimulate slice cooperation.The main idea is to encourage slice to perform cooperation for other slices by rewarding it with higher throughput.The proposed incentive scheme for slice cooperation is formulated by an optimal problem,where cooperative activities are introduced to the objective function.Since optimal solutions of the formulated problem are long term statistics,though can be obtained,a practical online slice scheduling algorithm is designed,which can obtain optimal solutions of the formulated maximal problem.Lastly,the throughput isolation indexes are defined to evaluate isolation performance of slice.According to simulation results,the proposed incentive scheme for slice cooperation can stimulate slice cooperation effectively,and the isolation of slice is also simulated and discussed.展开更多
High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication n...High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication network(HFCN) in this paper.First, we present the benefits and the challenges by introducing diversity technology into the existing HFCN. Secondly, to exploit the benefits fully and overcome the challenges, we propose a system structure suitable for deploying diversity technology in HFCN in large scale,based on the cloud radio access network and software defined network. Moreover, we present a general structure for the real-time updating frequency management system that plays a more important role especially when resource consuming(e.g., frequency) diversity technology is deployed. Thirdly, we investigate the key techniques enabling diversity technology deployment. Finally, we point out the future research directions to help the HFCN with diversity work more efficiently and intelligently.展开更多
The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) s...The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.展开更多
In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of po...In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of power-distribution communication networks, connecting users to control centers. Hence, they are vital for the reliable, safe, and economical operation of a power system. This paper proposes a planning method for AP allocation that takes into consideration economics, reliability, network delay, and (n-l) resilience. First, an optimization model for the AP location is established, which minimizes the cost of installing APs, while satisfying the reliability, network delay, and (n-1) resilience constraints. Then, an improved genetic algorithm is proposed to solve the optimization problem. The simulation results indicate that the proposed planning method can deal with diverse network conditions satisfactorily. Furthermore, it can be applied effectively with high flexibility and scalability.展开更多
The research of complex networks facilitates the progress of various disciplines,including biology,chemistry,social science,computer,and communication engineering.Recently,it is popular to utilize complex networks to ...The research of complex networks facilitates the progress of various disciplines,including biology,chemistry,social science,computer,and communication engineering.Recently,it is popular to utilize complex networks to study the communication networks,such as designing efficient routing strategies and robust communication networks.However,exploiting the advantages of communication networks to investigate networks in various disciplines beyond telecommunications is still in infancy.Because of this situation,this paper proposes an information-defined network(IDN)framework by which a complex network can be abstracted as a communication network associated with multiple intelligent agents.Specifically,each component and dynamic process in this framework can be defined by information.We show that the IDN framework promotes the research of unsolved problems in the current complex network field,especially for detecting new interaction types in realworld networks.展开更多
In order to indicate the performances of a large-scale communication network with domain partition and interconnection today, a kind of reliability index weighed by normalized capacity is defined. Based on the route r...In order to indicate the performances of a large-scale communication network with domain partition and interconnection today, a kind of reliability index weighed by normalized capacity is defined. Based on the route rules of network with domain partition and interconnection, the interconnection indexes among the nodes within the domain and among the domains are given from several aspects. It is expatiated on that the index can thoroughly represent the effect on the reliability index of the objective factor and the subjective measures of the designer, which obeys the route rules of a network with domain partition and interconnection. It is discussed that the defined index is rational and compatible with the traditional index.展开更多
With the popularization of wireless multimedia communications,the wireless traffic is predicated to be increased more than 1000time in the next decade.Some new technologies,e.g.,massive multi.input multi.output antenn...With the popularization of wireless multimedia communications,the wireless traffic is predicated to be increased more than 1000time in the next decade.Some new technologies,e.g.,massive multi.input multi.output antennas,millimeter wave and small展开更多
基金supported by the National Natura Science Foundation of China (NSFC), No.51607146China National Major Science and Technology Projects 2010ZX06004-013-04-02 and 2012ZX06002-017-02-01+1 种基金Sichuan Science and Technology Program,No.2018GZ0391Sichuan Hydropower Energy and power equipment technology Engineering Research Center, Xihua university, Chengdu 610039, China,No.SDNY2020-001
文摘In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.
基金supported by National Key R&D Program of China under Grant 2021YFB3901302 and 2021YFB2900301the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and U21A20445+1 种基金the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RCS2022ZZ004the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004.
文摘Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.
基金supported by National Natural Science Foundation of China (62171390)Central Universities of Southwest Minzu University (ZYN2022032,2023NYXXS034)the State Scholarship Fund of the China Scholarship Council (NO.202008510081)。
文摘In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.
基金Prospective Research Project on Future Networks of Jiangsu Province,China(No.BY2013095-1-18)
文摘With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.
文摘The ever-increasing needs of Internet of Things networks (IoTn) present considerable issues in computing complexity, security, trust, and authentication, among others. This gets increasingly more challenging as technology advances, and its use expands. As a consequence, boosting the capacity of these networks has garnered widespread attention. As a result, 5G, the next phase of cellular networks, is expected to be a game-changer, bringing with it faster data transmission rates, more capacity, improved service quality, and reduced latency. However, 5G networks continue to confront difficulties in establishing pervasive and dependable connections amongst high-speed IoT devices. Thus, to address the shortcomings in current recommendations, we present a unified architecture based on software-defined networks (SDNs) that provides 5G-enabled devices that must have complete secrecy. Through SDN, the architecture streamlines network administration while optimizing network communications. A mutual authentication protocol using elliptic curve cryptography is introduced for mutual authentication across certificate authorities and clustered heads in IoT network deployments based on IoT. Again, a dimensionality reduction intrusion detection mechanism is introduced to decrease computational cost and identify possible network breaches. However, to leverage the method’s potential, the initial module's security is reviewed. The second module is evaluated and compared to modern models.
文摘The development trend of PLC is that the functions are more, the integration level is greater and the network function is greater. Nowadays, the manufacturers of PLC develop there own network. PLC technique has two development trends. On one hand, PLC network system is not a self-contained closed system any longer and develops towards open system. Various PLC not only has distinctive PLC network systems and completes device control task, but also network with the superior computer management system to realize information exchange, which makes it become one part of information management system. On the other hand, the field-bus technique is widely applied. PLC is connected with the intelligent equipments installed on site such as intelligent instrument, sensor, intelligent solenoid valve, intelligent drive actuator by a transmission media ( such as twisted pair, coaxial cable and cable), and they transmit information mutually according to the same communication protocol, which can form a field industrial control network. Compared with single PLC remote network, the network not only has the advantages of flexible configurations, easy expansion, low cost and higher cost perfomaance, but also has opening significance.
基金supported by the State Grid project which names the simulation and service quality evaluation technology research of power communication network(No.XX71-14-046)
文摘In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.
基金This work was supported by the National Natural Science Foundation of China(Grants 61971054 and 61601045)Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory Foundation(HHX21641X002 and HHX20641X003).
文摘Benefit from the enhanced onboard processing capacities and high-speed satellite-terrestrial links,satellite edge computing has been regarded as a promising technique to facilitate the execution of the computation-intensive applications for satellite communication networks(SCNs).By deploying edge computing servers in satellite and gateway stations,SCNs can achieve significant performance gains of the computing capacities at the expense of extending the dimensions and complexity of resource management.Therefore,in this paper,we investigate the joint computing and communication resource management problem for SCNs to minimize the execution latency of the computation-intensive applications,while two different satellite edge computing scenarios and local execution are considered.Furthermore,the joint computing and communication resource allocation problem for the computation-intensive services is formulated as a mixed-integer programming problem.A game-theoretic and many-to-one matching theorybased scheme(JCCRA-GM)is proposed to achieve an approximate optimal solution.Numerical results show that the proposed method with low complexity can achieve almost the same weight-sum latency as the Brute-force method.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
文摘Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
基金supported by National Science Foundation Project of P. R. China (No. 61501026, U1603116)
文摘In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.
文摘The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a certain model with certain regularity,the FH frequency is thus predictable.In this paper,we investigate the FH frequency reconnais-sance and prediction of a non-cooperative communi-cation network by effective FH signal detection,time-frequency(TF)analysis,wavelet detection and fre-quency estimation.With the intercepted massive FH signal data,long short-term memory(LSTM)neural network model is constructed for FH frequency pre-diction.Simulation results show that our parameter es-timation methods could estimate frequency accurately in the presence of certain noise.Moreover,the LSTM-based scheme can effectively predict FH frequency and frequency interval.
基金This work was supported by National Key R&D Program of China under Grant 2018YFB1800802in part by the National Natural Science Foundation of China under Grant No.61771488,No.61631020 and No.61827801+1 种基金in part by State Key Laboratory of Air Traffic Management System and Technology under Grant No.SKLATM201808in part by Postgraduate Research and Practice Innovation Program of Jiangsu Province under No.KYCX190188.
文摘As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications.
基金This work is supported by the National Natural Science Foundation of China(No.61572086)the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)+1 种基金the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643)the Application Foundation Project of Sichuan Province(No.2017JY0168).
文摘This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication and cannot simply be attributed to security issues,therefore the basic and importance of trust management in quantum communication networks should be taken more seriously.Compared with other theories and techniques in quantum communication,the trust of quantum communication and trust management model in quantum communication network environment is still in its initial stage.In this paper,the core technologies of establishing secure and reliable quantum communication networks are categorized and summarized,and the trends of each direction in trust management of quantum communication network are discussed in depth.
基金supported by Beijing Natural Science Foundation under Grant number L172049the National Science and CAS Engineering Laboratory for Intelligent Agricultural Machinery Equipment GC201907-02
文摘In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage regions of access points(APs)shared by slices,device to device(D2D)communication can occur among different slices,i.e.,one device acts as D2D relay for another device serving by a different slice,which is defined as slice cooperation in this paper.Since selfish slices will not help other slices by cooperation voluntarily and unconditionally,this paper designs a novel resource allocation scheme to stimulate slice cooperation.The main idea is to encourage slice to perform cooperation for other slices by rewarding it with higher throughput.The proposed incentive scheme for slice cooperation is formulated by an optimal problem,where cooperative activities are introduced to the objective function.Since optimal solutions of the formulated problem are long term statistics,though can be obtained,a practical online slice scheduling algorithm is designed,which can obtain optimal solutions of the formulated maximal problem.Lastly,the throughput isolation indexes are defined to evaluate isolation performance of slice.According to simulation results,the proposed incentive scheme for slice cooperation can stimulate slice cooperation effectively,and the isolation of slice is also simulated and discussed.
基金supported by the National Science Foundation of China under Grants No. 61801492 and No. 61601490a national major specific project governed by the national development and reform commission of China
文摘High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication network(HFCN) in this paper.First, we present the benefits and the challenges by introducing diversity technology into the existing HFCN. Secondly, to exploit the benefits fully and overcome the challenges, we propose a system structure suitable for deploying diversity technology in HFCN in large scale,based on the cloud radio access network and software defined network. Moreover, we present a general structure for the real-time updating frequency management system that plays a more important role especially when resource consuming(e.g., frequency) diversity technology is deployed. Thirdly, we investigate the key techniques enabling diversity technology deployment. Finally, we point out the future research directions to help the HFCN with diversity work more efficiently and intelligently.
基金supported by the National High Technology Research and Development Program of P.R.China under Grant No.2012 AA121604 the National Natural Science Foundation of China under Grants No.60902042,No.61170014,No.61202079+1 种基金 the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20090006110014 the Foundation for Key Program of Ministry of Education of China under Grant No.311007
文摘The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.
基金supported by the National High Technology Research and Development Program of China(2012AA050801)
文摘In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of power-distribution communication networks, connecting users to control centers. Hence, they are vital for the reliable, safe, and economical operation of a power system. This paper proposes a planning method for AP allocation that takes into consideration economics, reliability, network delay, and (n-l) resilience. First, an optimization model for the AP location is established, which minimizes the cost of installing APs, while satisfying the reliability, network delay, and (n-1) resilience constraints. Then, an improved genetic algorithm is proposed to solve the optimization problem. The simulation results indicate that the proposed planning method can deal with diverse network conditions satisfactorily. Furthermore, it can be applied effectively with high flexibility and scalability.
基金supported in part by Young Elite Scientists Sponsorship Program by CAST under Grant number 2018QNRC001National Science Foundation of China with Grant number 91738202, 62071194
文摘The research of complex networks facilitates the progress of various disciplines,including biology,chemistry,social science,computer,and communication engineering.Recently,it is popular to utilize complex networks to study the communication networks,such as designing efficient routing strategies and robust communication networks.However,exploiting the advantages of communication networks to investigate networks in various disciplines beyond telecommunications is still in infancy.Because of this situation,this paper proposes an information-defined network(IDN)framework by which a complex network can be abstracted as a communication network associated with multiple intelligent agents.Specifically,each component and dynamic process in this framework can be defined by information.We show that the IDN framework promotes the research of unsolved problems in the current complex network field,especially for detecting new interaction types in realworld networks.
文摘In order to indicate the performances of a large-scale communication network with domain partition and interconnection today, a kind of reliability index weighed by normalized capacity is defined. Based on the route rules of network with domain partition and interconnection, the interconnection indexes among the nodes within the domain and among the domains are given from several aspects. It is expatiated on that the index can thoroughly represent the effect on the reliability index of the objective factor and the subjective measures of the designer, which obeys the route rules of a network with domain partition and interconnection. It is discussed that the defined index is rational and compatible with the traditional index.
文摘With the popularization of wireless multimedia communications,the wireless traffic is predicated to be increased more than 1000time in the next decade.Some new technologies,e.g.,massive multi.input multi.output antennas,millimeter wave and small